Fitness
Changes in daily intake of nutrients and foods including confectionery after the initiation of empagliflozin in Japanese patients with type 2 diabetes: a pilot study – BMC Nutrition
Polidori D, Sanghvi A, Seeley RJ, Hall KD. How Strongly does appetite counter weight loss? Quantification of the feedback control of human energy intake. Obesity (Silver Spring). 2016;24(11):2289–95.
Ferrannini G, Hach T, Crowe S, Sanghvi A, Hall KD, Ferrannini E. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38(9):1730–5.
Kim H, Lee SH, Lee H, Yim HW, Cho JH, Yoon KH, et al. Blood glucose levels and bodyweight change after dapagliflozin administration. J Diabetes Investig. 2021;12(9):1594–602.
Blüher M. GLP1 receptor agonist overcomes SGLT2 inhibitor-related overeating. Nat Rev Endocrinol. 2022;18(9):523–4.
Matsuba I, Kanamori A, Takihata M, Takai M, Maeda H, Kubota A, et al. Canagliflozin increases calorie intake in type 2 diabetes without changing the energy ratio of the three macronutrients: CANA-K study. Diabetes Technol Ther. 2020;22(3):228–34.
Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ, Pelleymounter MA. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring). 2012;20(8):1645–52.
Iuchi H, Sakamoto M, Matsutani D, Suzuki H, Kayama Y, Takeda N, et al. Time-dependent effects of ipragliflozin on behaviour and energy homeostasis in normal and type 2 diabetic rats: continuous glucose telemetry analysis. Sci Rep. 2017;7(1):11906.
Hashiuchi E, Watanabe H, Kimura K, Matsumoto M, Inoue H, Inaba Y. Diet intake control is indispensable for the gluconeogenic response to sodium-glucose cotransporter 2 inhibition in male mice. J Diabetes Investig. 2021;12(1):35–47.
Miura H, Sakaguchi K, Okada Y, Yamada T, Otowa-Suematsu N, So A, et al. Effects of ipragliflozin on glycemic control, appetite and its related hormones: a prospective, multicenter, open-label study (SOAR-KOBE Study). J Diabetes Investig. 2019;10(5):1254–61.
Horie I, Abiru N, Hongo R, Nakamura T, Ito A, Haraguchi A, et al. Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment. Diabetes Res Clin Pract. 2018;135:178–84.
Rajeev SP, Roberts CA, Brown E, Sprung VS, Harrold JA, Halford JCG, et al. No evidence of compensatory changes in energy balance, despite reductions in body weight and liver fat, during dapagliflozin treatment in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, cross-over trial (ENERGIZE). Diabetes Obes Metab. 2023;25(12):3621–31.
Tahara A, Kondo Y, Takasu T, Tomiyama H. Effects of the SGLT2 inhibitor ipragliflozin on food intake, appetite-regulating hormones, and arteriovenous differences in postprandial glucose levels in type 2 diabetic rats. Biomed Pharmacother. 2018;105:1033–41.
Kosugi R, Nakatani E, Okamoto K, Aoshima S, Arai H, Inoue T. Effects of sodium-glucose cotransporter 2 inhibitor (dapagliflozin) on food intake and plasma fibroblast growth factor 21 levels in type 2 diabetes patients. Endocr J. 2019;66(8):677–82.
Yabe D, Shiki K, Homma G, Meinicke T, Ogura Y, Seino Y. Efficacy and safety of the sodium-glucose co-transporter-2 inhibitor empagliflozin in elderly Japanese adults (≥65 years) with type 2 diabetes: a randomized, double-blind, placebo-controlled, 52-week clinical trial (EMPA-ELDERLY). Diabetes Obes Metab. 2023;25(12):3538–48.
Sasaki S, Yanagibori R, Amano K. Validity of a self-administered diet history questionnaire for assessment of sodium and potassium: comparison with single 24-hour urinary excretion. Jpn Circ J. 1998;62(6):431–5.
Science and Technology Agency. Standard tables of food composition in Japan, fifth revised and enlarged edition (in Japanese). Tokyo: Printing Bureau of the Ministry of Finance; 2005.
Sasaki S, Ushio F, Amano K, Morihara M, Todoriki O, Uehara Y, et al. Serum biomarker-based validation of a self-administered diet history questionnaire for Japanese subjects. J Nutr Sci Vitaminol (Tokyo). 2000;46(6):285–96.
Okubo H, Sasaki S, Rafamantanantsoa HH, Ishikawa-Takata K, Okazaki H, Tabata I. Validation of self-reported energy intake by a self-administered diet history questionnaire using the doubly labeled water method in 140 Japanese adults. Eur J Clin Nutr. 2008;62(11):1343–50.
Kobayashi S, Murakami K, Sasaki S, Okubo H, Hirota N, Notsu A, et al. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011;14(7):1200–11.
Kobayashi S, Honda S, Murakami K, Sasaki S, Okubo H, Hirota N, et al. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J Epidemiol. 2012;22(2):151–9.
Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.
Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953;249(1):13–6.
Page KA, Seo D, Belfort-DeAguiar R, Lacadie C, Dzuira J, Naik S, et al. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J Clin Invest. 2011;121(10):4161–9.
van Ruiten CC, Veltman DJ, Schrantee A, van Bloemendaal L, Barkhof F, Kramer MHH, et al. Effects of dapagliflozin and combination therapy with exenatide on food-cue induced brain activation in patients with type 2 diabetes. J Clin Endocrinol Metab. 2022;107(6):e2590–9.
Bertran E, Berlie HD, Nixon A, Jaber L. Does dapagliflozin affect energy intake and appetite? A randomized, controlled exploratory study in healthy subjects. Clin Pharmacol Drug Dev. 2019;8(1):119–25.
Furukawa S, Miyake T, Miyaoka H, Matsuura B, Hiasa Y. Observational study on unhealthy eating behavior and the effect of sodium-glucose cotransporter 2 inhibitors: the luseogliflozin ehime diabetes study. Diabetes Ther. 2022;13(5):1073–82.
Gouda M, Matsukawa M, Iijima H. Associations between eating habits and glycemic control and obesity in Japanese workers with type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2018;11:647–58.
van Ruiten CC, Veltman DJ, Wijdeveld M, Ten Kulve JS, Kramer MHH, Nieuwdorp M, et al. Combination therapy with exenatide decreases the dapagliflozin-induced changes in brain responses to anticipation and consumption of palatable food in patients with type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2022;24(8):1588–97.
English PJ, Ashcroft A, Patterson M, Dovey TM, Halford JC, Harrison J, et al. Metformin prolongs the postprandial fall in plasma ghrelin concentrations in type 2 diabetes. Diabetes Metab Res Rev. 2007;23(4):299–303.
Sargeant JA, King JA, Yates T, Redman EL, Bodicoat DH, Chatterjee S, et al. The effects of empagliflozin, dietary energy restriction, or both on appetite-regulatory gut peptides in individuals with type 2 diabetes and overweight or obesity: the SEESAW randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2022;24(8):1509–21.
Hanson P, Randeva H, Cuthbertson DJ, O’Hare PJ, Parsons N, Chatha K, et al. The DAPA-DIET study: metabolic response to dapagliflozin combined with dietary carbohydrate restriction in patients with type 2 diabetes mellitus and obesity-a longitudinal cohort study. Endocrinol Diabetes Metab. 2022;5(6):e381.
Tokudome Y, Imaeda N, Nagaya T, Ikeda M, Fujiwara N, Sato J, et al. Daily, weekly, seasonal, within- and between-individual variation in nutrient intake according to four season consecutive 7 day weighed diet records in Japanese female dietitians. J Epidemiol. 2002;12(2):85–92.