Tech
Digital in-line holographic microscopy for label-free identification and tracking of biological cells – Military Medical Research
Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science. 2003;300(5616):82–6.
Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7(8):603–14.
Spiller DG, Wood CD, Rand DA, White MR. Measurement of single-cell dynamics. Nature. 2010;465(7299):736–45.
Cierpka C, Kähler CJ. Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J Vis. 2012;15:1–31.
Morris JD, Payne CK. Microscopy and cell biology: new methods and new questions. Ann Rev Phys Chem. 2019;70:199–218.
Gravesen P, Branebjerg J, Jensen OS. Microfluidics – a review. J Micromech Microeng. 1993;3(4):168.
Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech. 2004;36:381–411.
Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181–9.
Samiei E, Tabrizian M, Hoorfar M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip. 2016;16(13):2376–96.
Wang X, Hong XZ, Li YW, Li Y, Wang J, Chen P, et al. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res. 2022;9(1):11.
Dupire J, Socol M, Viallat A. Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci U S A. 2012;109(51):20808–13.
Zeng NF, Ristenpart WD. Mechanical response of red blood cells entering a constriction. Biomicrofluidics. 2014;8(6):064123.
Lansche C, Dasanna AK, Quadt K, Fröhlich B, Missirlis D, Tétard M, et al. The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Commun Biol. 2018;1:211.
Atwell S, Badens C, Charrier A, Helfer E, Viallat A. Dynamics of individual red blood cells under shear flow: a way to discriminate deformability alterations. Front Physiol. 2022;12:775584.
Recktenwald SM, Graessel K, Maurer FM, John T, Gekle S, Wagner C. Red blood cell shape transitions and dynamics in time-dependent capillary flows. Biophys J. 2022;121(1):23–36.
Darrin M, Samudre A, Sahun M, Atwell S, Badens C, Charrier A, et al. Classification of red cell dynamics with convolutional and recurrent neural networks: a sickle cell disease case study. Sci Rep. 2023;13(1):745.
Egeblad M, Ewald AJ, Askautrud HA, Truitt ML, Welm BE, Bainbridge E, et al. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Models Mech. 2008;1(2–3):155–67.
Renaud O, Herbomel P, Kissa K. Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells. Nat Protoc. 2011;6(12):1897–904.
Carey SP, Kraning-Rush CM, Williams RM, Reinhart-King CA. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 2012;33(16):4157–65.
Elliott AD. Confocal microscopy: principles and modern practices. Curr Protoc Cytom. 2020;92(1):e68.
Agero U, Monken C, Ropert C, Gazzinelli R, Mesquita O. Cell surface fluctuations studied with defocusing microscopy. Phys Rev E. 2003;67(5):051904.
Etcheverry S, Gallardo MJ, Solano P, Suwalsky M, Mesquita ON, Saavedra C. Real-time study of shape and thermal fluctuations in the echinocyte transformation of human erythrocytes using defocusing microscopy. J Biomed Opt. 2012;17(10):106013.
Roma PM, Siman L, Hissa B, Agero U, Braga EM, Mesquita ON. Profiling of individual human red blood cells under osmotic stress using defocusing microscopy. J Biomed Opt. 2016;21(9):090505.
Gabor D. A new microscopic principle. Nature. 1948;161(4098):777–8.
Murata S, Yasuda N. Potential of digital holography in particle measurement. Opt Laser Technol. 2000;32(7–8):567–74.
Garcia-Sucerquia J, Xu W, Jericho SK, Klages P, Jericho MH, Kreuzer HJ. Digital in-line holographic microscopy. Appl Opt. 2006;45(5):836–50.
Sheng J, Malkiel E, Katz J. Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt. 2006;45(16):3893–901.
Kim MK. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010;1(1):018005.
Choi YS, Seo KW, Sohn MH, Lee SJ. Advances in digital holographic micro-PTV for analyzing microscale flows. Opt Lasers Eng. 2012;50(1):39–45.
Yu X, Hong J, Liu C, Kim MK. Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt Eng. 2014;53(11):112306.
Memmolo P, Miccio L, Paturzo M, Di Caprio G, Coppola G, Netti PA, et al. Recent advances in holographic 3D particle tracking. Adv Opt Photonics. 2015;7(4):713–55.
Wu Y, Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods. 2018;136:4–16.
Xu W, Jericho M, Meinertzhagen I, Kreuzer H. Digital in-line holography of microspheres. Appl Opt. 2002;41(25):5367–75.
Sheng J, Malkiel E, Katz J. Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer. Exp Fluids. 2008;45:1023–35.
Choi YS, Lee SJ. Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow. Microfluid Nanofluidics. 2010;9:819–29.
Katz J, Sheng J. Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech. 2010;42:531–55.
Choi YS, Seo KW, Lee SJ. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab Chip. 2011;11(3):460–5.
Seo KW, Choi YS, Lee SJ. Dean-coupled inertial migration and transient focusing of particles in a curved microscale pipe flow. Exp Fluids. 2012;53(6):1867–77.
Seo KW, Byeon HJ, Huh HK, Lee SJ. Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids. RSC Adv. 2014;4:3512–20.
Lee SH, Roichman Y, Yi GR, Kim SH, Yang SM, van Blaaderen A, et al. Characterizing and tracking single colloidal particles with video holographic microscopy. Opt Express. 2007;15(26):18275–82.
Fung J, Martin KE, Perry RW, Kaz DM, McGorty R, Manoharan VN. Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy. Opt Express. 2011;19(9):8051–65.
Verrier N, Fournier C, Fournel T. 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction. Appl Opt. 2015;54(16):4996–5002.
Ling H, Srinivasan S, Golovin K, McKinley GH, Tuteja A, Katz J. High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J Fluid Mech. 2016;801:670–703.
Wang L, Wu Y, Wu X, Cen K. Measurement of dynamics of laser-induced cavitation around nanoparticle with high-speed digital holographic microscopy. Exp Therm Fluid Sci. 2021;121:110266.
Go T, Kim J, Lee SJ. Three-dimensional volumetric monitoring of settling particulate matters on a leaf using digital in-line holographic microscopy. J Hazard Mater. 2021;404(Pt A):124116.
Kim J, Kim J, Kim Y, Go T, Lee SJ. Accelerated settling velocity of airborne particulate matter on hairy plant leaves. J Environ Manage. 2023;332:117313.
Xu W, Jericho M, Meinertzhagen I, Kreuzer H. Digital in-line holography for biological applications. Proc Natl Acad Sci U S A. 2001;98(20):11301–5.
Jericho S, Garcia-Sucerquia J, Xu W, Jericho M, Kreuzer H. Submersible digital in-line holographic microscope. Rev Sci Instrum. 2006;77(4):043706.
Rotermund L, Samson J, Kreuzer H. A submersible holographic microscope for 4D in-situ studies of micro-organisms in the ocean with intensity and quantitative phase imaging. J Marine Sci Res Dev. 2016;6(1):1000181.
Liu Z, Takahashi T, Lindsay D, Thevar T, Sangekar M, Watanabe HK, et al. Digital in-line holography for large-volume analysis of vertical motion of microscale marine plankton and other particles. IEEE J Ocean Eng. 2021;46(4):1248–60.
Repetto L, Piano E, Pontiggia C. Lensless digital holographic microscope with light-emitting diode illumination. Opt Lett. 2004;29(10):1132–4.
Mariën J, Stahl R, Lambrechts A, van Hoof C, Yurt A. Color lens-free imaging using multi-wavelength illumination based phase retrieval. Opt Express. 2020;28(22):33002–18.
Xiong Z, Potter CJ, McLeod E. High-speed lens-free holographic sensing of protein molecules using quantitative agglutination assays. ACS Sensors. 2021;6(3):1208–17.
Liu J-P, Tahara T, Hayasaki Y, Poon TC. Incoherent digital holography: a review. Appl Sci. 2018;8(1):143.
Rosen J, Vijayakumar A, Kumar M, Rai MR, Kelner R, Kashter Y, et al. Recent advances in self-interference incoherent digital holography. Adv Opt Photonics. 2019;11(1):1–66.
Tahara T, Zhang Y, Rosen J, Anand V, Cao L, Wu J, et al. Roadmap of incoherent digital holography. Appl Phys B. 2022;128:193.
Tahara T. Polarization-filterless polarization-sensitive polarization-multiplexed phase-shifting incoherent digital holography (P4IDH). Opt Lett. 2023;48(15):3881–4.
Chang M, Hu CP, Lam P, Wyant JC. High precision deformation measurement by digital phase shifting holographic interferometry. Appl Opt. 1985;24(22):3780–3.
Awatsuji Y, Tahara T, Kaneko A, Koyama T, Nishio K, Ura S, et al. Parallel two-step phase-shifting digital holography. Appl Opt. 2008;47(19):D183–9.
Tahara T, Awatsuji Y, Shimozato Y, Kakue T, Nishio K, Ura S, et al. Single-shot polarization-imaging digital holography based on simultaneous phase-shifting interferometry. Opt Lett. 2011;36(16):3254–6.
Sanz M, Picazo-Bueno JA, García J, Micó V. Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm. Opt Express. 2015;23(16):21352–65.
Farthing NE, Findlay RC, Jikeli JF, Walrad PB, Bees MA, Wilson LG. Simultaneous two-color imaging in digital holographic microscopy. Opt Express. 2017;25(23):28489–500.
Min J, Zhou M, Yuan X, Wen K, Yu X, Peng T, et al. Optical thickness measurement with single-shot dual-wavelength in-line digital holography. Opt Lett. 2018;43(18):4469–72.
Zhang H, Stangner T, Wiklund K, Andersson M. Object plane detection and phase retrieval from single-shot holograms using multi-wavelength in-line holography. Appl Opt. 2018;57(33):9855–62.
Lee SH, Grier DG. Holographic microscopy of holographically trapped three-dimensional structures. Opt Express. 2007;15(4):1505–12.
Cheong FC, Xiao K, Grier DG. Characterizing individual milk fat globules with holographic video microscopy. J Dairy Sci. 2009;92(1):95–9.
Cheong FC, Krishnatreya BJ, Grier DG. Strategies for three-dimensional particle tracking with holographic video microscopy. Opt Express. 2010;18(13):13563–73.
Cheong FC, Grier DG. Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy. Opt Express. 2010;18(7):6555–62.
Fugal JP, Schulz TJ, Shaw RA. Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas Sci Technol. 2009;20(7):075501.
Pedrini G, Schedin S, Tiziani HJ. Spatial filtering in digital holographic microscopy. J Mod Opt. 2000;47(8):1447–54.
Malkiel E, Abras JN, Katz J. Automated scanning and measurements of particle distributions within a holographic reconstructed volume. Meas Sci Technol. 2004;15(4):601.
Lee SJ, Seo KW, Choi YS, Sohn MH. Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy. Meas Sci Technol. 2011;22:064004.
Singh DK, Panigrahi P. Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles. Opt Express. 2010;18(3):2426–48.
Garcia-Sucerquia J, Ramírez JAH, Prieto DV. Reduction of speckle noise in digital holography by using digital image processing. Optik. 2005;116(1):44–8.
Yang Y, Kang BS, Choo YJ. Application of the correlation coefficient method for determination of the focal plane to digital particle holography. Appl Opt. 2008;47(6):817–24.
Kukrer O, Hocanin A. Frequency-response-shaped LMS adaptive filter. Digit Signal Process. 2006;16(6):855–69.
Zajtsev AK, Lin SH, Hsu KY. Sidelobe suppression of spectral response in holographic optical filter. Opt Commun. 2001;190(1–6):103–8.
Sharma A, Sheoran G, Jaffery Z. Improvement of signal-to-noise ratio in digital holography using wavelet transform. Opt Lasers Eng. 2008;46(1):42–7.
Uzan A, Rivenson Y, Stern A. Speckle denoising in digital holography by nonlocal means filtering. Appl Opt. 2013;52(1):A195–200.
Molaei M, Sheng J. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm. Opt Express. 2014;22(26):32119–37.
Jeon W, Jeong W, Son K, Yang H. Speckle noise reduction for digital holographic images using multi-scale convolutional neural networks. Opt Lett. 2018;43(17):4240–3.
Bai C, Peng T, Min J, Li R, Zhou Y, Yao B. Dual-wavelength in-line digital holography with untrained deep neural networks. Photonics Res. 2021;9(12):2501–10.
Chen L, Chen X, Cui H, Long Y, Wu J. Image enhancement in lensless inline holographic microscope by inter-modality learning with denoising convolutional neural network. Opt Commun. 2021;484:126682.
Bishara W, Su TW, Coskun AF, Ozcan A. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt Express. 2010;18(11):11181–91.
Byeon H, Go T, Lee SJ. Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view. Opt Laser Technol. 2019;113:77–86.
Luo Z, Yurt A, Stahl R, Lambrechts A, Reumers V, Braeken D, et al. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks. Opt Express. 2019;27(10):13581–95.
Lee H, Kim J, Kim J, Jeon P, Lee SA, Kim D. Noniterative sub-pixel shifting super-resolution lensless digital holography. Opt Express. 2021;29(19):29996–30006.
Potter CJ, Hu Y, Xiong Z, Wang J, McLeod E. Point-of-care SARS-CoV-2 sensing using lens-free imaging and a deep learning-assisted quantitative agglutination assay. Lab Chip. 2022;22(19):3744–54.
Goodman JW. Introduction to Fourier optics. Colorado: Roberts and Company Publishers; 2005.
Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Amsterdam: Elsevier; 2013.
Barton JJ. Photoelectron holography. Phys Rev Lett. 1988;61(12):1356–9.
Kreuzer H, Nakamura K, Wierzbicki A, Fink H, Schmid H. Theory of the point source electron microscope. Ultramicroscopy. 1992;45(3–4):381–403.
Kreuzer H. Low energy electron point source microscopy. Micron. 1995;26(6):503–9.
Delen N, Hooker B. Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach. JOSA A. 1998;15(4):857–67.
Veerman JA, Rusch JJ, Urbach HP. Calculation of the Rayleigh-Sommerfeld diffraction integral by exact integration of the fast oscillating factor. JOSA A. 2005;22(4):636–46.
Shen F, Wang A. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Appl Opt. 2006;45(6):1102–10.
Wilson L, Zhang R. 3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation. Opt Express. 2012;20(15):16735–44.
Sheng J, Malkiel E, Katz J, Adolf J, Belas R, Place AR. Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. Proc Natl Acad Sci U S A. 2007;104(44):17512–7.
Ratcliffe JA. Some aspects of diffraction theory and their application to the ionosphere. Rep Prog Phys. 1956;19:188.
Koren G, Polack F, Joyeux D. Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints. JOSA A. 1993;10(3):423–33.
Latychevskaia T, Fink HW. Solution to the twin image problem in holography. Phys Rev Lett. 2007;98(23):233901.
Ling H, Katz J. Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms. Appl Opt. 2014;53(27):G1–11.
Oe K, Nomura T. Twin-image reduction method using a diffuser for phase imaging in-line digital holography. Appl Opt. 2018;57(20):5652–6.
Rivenson Y, Zhang Y, Günaydın H, Teng D, Ozcan A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl. 2018;7:17141.
Latychevskaia T. Iterative phase retrieval for digital holography: tutorial. JOSA A. 2019;36(12):D31–40.
Shangraw M, Ling H. Separating twin images in digital holographic microscopy using weak scatterers. Appl Opt. 2021;60(3):626–34.
Langehanenberg P, Kemper B, Dirksen D, von Bally G. Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl Opt. 2008;47(19):D176–82.
Memmolo P, Distante C, Paturzo M, Finizio A, Ferraro P, Javidi B. Automatic focusing in digital holography and its application to stretched holograms. Opt Lett. 2011;36(10):1945–7.
Gibson T, Bedrossian M, Serabyn E, Lindensmith C, Nadeau JL. Using the Gouy phase anomaly to localize and track bacteria in digital holographic microscopy 4D images. JOSA A. 2021;38(2):A11–8.
Memmolo P, Paturzo M, Javidi B, Netti PA, Ferraro P. Refocusing criterion via sparsity measurements in digital holography. Opt Lett. 2014;39(16):4719–22.
Yeo T, Ong S, Sinniah R. Autofocusing for tissue microscopy. Image Vis Comput. 1993;11(10):629–39.
Brenner JF, Dew BS, Horton JB, King T, Neurath PW, Selles WD. An automated microscope for cytologic research a preliminary evaluation. J Histochem Cytochem. 1976;24(1):100–11.
Trusiak M, Picazo-Bueno JA, Zdankowski P, Micó V. DarkFocus: numerical autofocusing in digital in-line holographic microscopy using variance of computational dark-field gradient. Opt Lasers Eng. 2020;134:106195.
Li W, Loomis NC, Hu Q, Davis CS. Focus detection from digital in-line holograms based on spectral L1 norms. JOSA A. 2007;24(10):3054–62.
Kumar SS, Sun Y, Zou S, Hong J. 3D holographic observatory for long-term monitoring of complex behaviors in drosophila. Sci Rep. 2016;6:33001.
Ren Z, Xu Z, Lam EY. Learning-based nonparametric autofocusing for digital holography. Optica. 2018;5(4):337–44.
Wu Y, Rivenson Y, Zhang Y, Wei Z, Günaydin H, Lin X, et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica. 2018;5(6):704–10.
Lee SJ, Yoon GY, Go T. Deep learning-based accurate and rapid tracking of 3D positional information of microparticles using digital holographic microscopy. Exp Fluids. 2019;60:170.
Pitkäaho T, Manninen A, Naughton TJ. Focus prediction in digital holographic microscopy using deep convolutional neural networks. Appl Opt. 2019;58(5):A202–8.
Montoya M, Lopera MJ, Gómez-Ramírez A, Buitrago-Duque C, Pabón-Vidal A, Herrera-Ramirez J, et al. FocusNET: an autofocusing learning-based model for digital lensless holographic microscopy. Opt Lasers Eng. 2023;165:107546.
Baek S, Lee S. A new two-frame particle tracking algorithm using match probability. Exp Fluids. 1996;22:23–32.
Crocker JC, Grier DG. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci. 1996;179(1):298–310.
Allan DB, Caswell T, Keim N, van der Wel C, Verweij R. Soft-matter/trackpy: v0.6.1. Zenodo; 2023. https://zenodo.org/records/7670439.
Hassan Y, Canaan R. Full-field bubbly flow velocity measurements using a multiframe particle tracking technique. Exp Fluids. 1991;12:49–60.
Malik N, Dracos T, Papantoniou D. Particle tracking velocimetry in three-dimensional flows. Exp Fluids. 1993;15:279–94.
Ouellette NT, Xu H, Bodenschatz E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp Fluids. 2006;40:301–13.
Li D, Zhang Y, Sun Y, Yan W. A multi-frame particle tracking algorithm robust against input noise. Meas Sci Technol. 2008;19(10):105401.
Cierpka C, Lütke B, Kähler CJ. Higher order multi-frame particle tracking velocimetry. Exp Fluids. 2013;54:1533.
Labonté G. Neural network reconstruction of fluid flows from tracer-particle displacements. Exp Fluids. 2001;30:399–409.
Mallery K, Shao S, Hong J. Dense particle tracking using a learned predictive model. Exp Fluids. 2020;61:223.
Dixon L, Cheong FC, Grier DG. Holographic deconvolution microscopy for high-resolution particle tracking. Opt Express. 2011;19(17):16410–7.
Latychevskaia T, Fink HW. Holographic time-resolved particle tracking by means of three-dimensional volumetric deconvolution. Opt Express. 2014;22(17):20994–1003.
Toloui M, Hong J. High fidelity digital inline holographic method for 3D flow measurements. Opt Express. 2015;23(21):27159–73.
Mallery K, Hong J. Regularized inverse holographic volume reconstruction for 3D particle tracking. Opt Express. 2019;27(13):18069–84.
Chen N, Wang C, Heidrich W. Snapshot space-time holographic 3D particle tracking velocimetry. Laser Photonics Rev. 2021;15(8):2100008.
Sun B, Ahmed A, Atkinson C, Soria J. A novel 4D digital holographic PIV/PTV (4D-DHPIV/PTV) methodology using iterative predictive inverse reconstruction. Meas Sci Technol. 2020;31(10):104002.
Shao S, Mallery K, Kumar SS, Hong J. Machine learning holography for 3D particle field imaging. Opt Express. 2020;28(3):2987–99.
Wang K, Dou J, Kemao Q, Di J, Zhao J. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Opt Lett. 2019;44(19):4765–8.
Yin D, Gu Z, Zhang Y, Gu F, Nie S, Ma J, et al. Digital holographic reconstruction based on deep learning framework with unpaired data. IEEE Photonics J. 2019;12(2):3900312.
Jaferzadeh K, Fevens T. HoloPhaseNet: fully automated deep-learning-based hologram reconstruction using a conditional generative adversarial model. Biomed Opt Express. 2022;13(7):4032–46.
Kiriy SA, Rymov DA, Svistunov AS, Shifrina AV, Starikov RS, Cheremkhin PA. Generative adversarial neural network for 3D-hologram reconstruction. Laser Phys Lett. 2024;21(4):045201.
Chen H, Huang L, Liu T, Ozcan A. Fourier imager network (FIN): a deep neural network for hologram reconstruction with superior external generalization. Light Sci Appl. 2022;11(1):254.
Huang L, Chen H, Liu T, Ozcan A. Self-supervised learning of hologram reconstruction using physics consistency. Nat Mach Intell. 2023;5:895–907.
Sun H, Song B, Dong H, Reid B, Player MA, Watson J, et al. Visualization of fast-moving cells in vivo using digital holographic video microscopy. J Biomed Opt. 2008;13(1):014007.
Nette F, Guerra de Souza AC, Laskay T, Ohms M, Dömer D, Drömann D, et al. Method for simultaneous tracking of thousands of unlabeled cells within a transparent 3D matrix. PLoS One. 2022;17(6):e0270456.
Choi YS, Lee SJ. Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy. Appl Opt. 2009;48(16):2983–90.
Choi YS, Lee SJ. Inertial migration of erythrocytes in low-viscosity and high-shear rate microtube flows: aplication simple digital in-line holographic microscopy. J Biomech. 2012;45(15):2706–9.
Seo KW, Ha YR, Lee SJ. Vertical focusing and cell ordering in a microchannel via viscoelasticity: applications for cell monitoring using a digital holographic microscopy. Appl Phys Lett. 2014;104(21):213702.
Go T, Byeon H, Lee SJ. Focusing and alignment of erythrocytes in a viscoelastic medium. Sci Rep. 2017;7:41162.
Byeon H, Go T, Lee SJ. Digital stereo-holographic microscopy for studying three-dimensional particle dynamics. Opt Lasers Eng. 2018;105:6–13.
Kim Y, Kim J, Seo E, Lee SJ. AI-based analysis of 3D position and orientation of red blood cells using a digital in-line holographic microscopy. Biosens Bioelectron. 2023;229:115232.
Su TW, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci U S A. 2012;109(40):16018–22.
Picazo-Bueno JA, Trindade K, Sanz M, Micó V. Design, calibration, and application of a robust, cost-effective, and high-resolution lensless holographic microscope. Sensors. 2022;22(2):553.
Rogalski M, Picazo-Bueno JA, Winnik J, Zdańkowski P, Micó V, Trusiak M. Accurate automatic object 4D tracking in digital in-line holographic microscopy based on computationally rendered dark fields. Sci Rep. 2022;12:12909.
Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R, Colin R, et al. Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat Commun. 2015;6:7985.
Su TW, Choi I, Feng J, Huang K, Ozcan A. High-throughput analysis of horse sperms’ 3D swimming patterns using computational on-chip imaging. Anim Reprod Sci. 2016;169:45–55.
Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science. 2021;371(6525):eabd4914.
Vater SM, Weiße S, Maleschlijski S, Lotz C, Koschitzki F, Schwartz T, et al. Swimming behavior of Pseudomonas aeruginosa studied by holographic 3D tracking. PLoS One. 2014;9(1):e87765.
Cheong FC, Wong CC, Gao Y, Nai MH, Cui Y, Park S, et al. Rapid, high-throughput tracking of bacterial motility in 3D via phase-contrast holographic video microscopy. Biophys J. 2015;108(5):1248–56.
Tai CW, Ahmadzadegan A, Ardekani A, Narsimhan V. A forward reconstruction, holographic method to overcome the lens effect during 3D detection of semi-transparent, non-spherical particles. Soft Matter. 2023;19(1):115–27.
Wang A, Garmann RF, Manoharan VN. Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy. Opt Express. 2016;24(21):23719–25.
Kühn MJ, Schmidt FK, Farthing NE, Rossmann FM, Helm B, Wilson LG, et al. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat Commun. 2018;9(1):5369.
Molaei M, Barry M, Stocker R, Sheng J. Failed escape: solid surfaces prevent tumbling of Escherichia coli. Phys Rev Lett. 2014;113(6):068103.
Molaei M, Sheng J. Succeed escape: flow shear promotes tumbling of Escherichia coli near a solid surface. Sci Rep. 2016;6:35290.
Qi M, Gong X, Wu B, Zhang G. Landing dynamics of swimming bacteria on a polymeric surface: effect of surface properties. Langmuir. 2017;33(14):3525–33.
Bianchi S, Saglimbeni F, Di Leonardo R. Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys Rev X. 2017;7(1):011010.
Qi M, Song Q, Zhao J, Ma C, Zhang G, Gong X. Three-dimensional bacterial behavior near dynamic surfaces formed by degradable polymers. Langmuir. 2017;33(45):13098–104.
Peng Q, Zhou X, Wang Z, Xie Q, Ma C, Zhang G, et al. Three-dimensional bacterial motions near a surface investigated by digital holographic microscopy: effect of surface stiffness. Langmuir. 2019;35(37):12257–63.
Hook AL, Flewellen JL, Dubern JF, Carabelli AM, Zaid IM, Berry RM, et al. Simultaneous tracking of Pseudomonas aeruginosa motility in liquid and at the solid-liquid interface reveals differential roles for the flagellar stators. mSystems. 2019;4(5):e00390–e419.
Elius M, Boyle K, Chang WS, Moisander PH, Ling H. Comparison of three-dimensional motion of bacteria with and without wall accumulation. Phys Rev E. 2023;108(1):014409.
He X, Zhang W, Feng P, Mai Z, Gong X, Zhang G. Role of surface coverage of sessile probiotics in their interplay with pathogen bacteria investigated by digital holographic microscopy. Langmuir. 2023;39(48):17308–17.
Sohn MH, Seo KW, Choi YS, Lee SJ, Kang YS, Kang YS. Determination of the swimming trajectory and speed of chain-forming dinoflagellate Cochlodinium polykrikoides with digital holographic particle tracking velocimetry. Mar Biol. 2011;158:561–70.
Lee SJ, Go T, Byeon H. Three-dimensional swimming motility of microorganism in the near-wall region. Exp Fluids. 2016;57:26.
Lewis NI, Xu W, Jericho SK, Kreuzer HJ, Jericho MH, Cembella AD. Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography. Phycologia. 2006;45(1):61–70.
Sheng J, Malkiel E, Katz J, Adolf JE, Place AR. A dinoflagellate exploits toxins to immobilize prey prior to ingestion. Proc Natl Acad Sci U S A. 2010;107(5):2082–7.
Sohn MH, Lim S, Seo KW, Lee SJ. Effect of ambient medium viscosity on the motility and flagella motion of Prorocentrum minimum (Dinophyceae). J Plankton Res. 2013;35(6):1294–304.
Dharmawan AB, Mariana S, Scholz G, Hörmann P, Schulze T, Triyana K, et al. Nonmechanical parfocal and autofocus features based on wave propagation distribution in lensfree holographic microscopy. Sci Rep. 2021;11:3213.
Xu W, Jericho M, Kreuzer H, Meinertzhagen I. Tracking particles in four dimensions with in-line holographic microscopy. Opt Lett. 2003;28(3):164–6.
Jericho S, Klages P, Nadeau J, Dumas E, Jericho M, Kreuzer H. In-line digital holographic microscopy for terrestrial and exobiological research. Planet Space Sci. 2010;58(4):701–5.
Lee SJ, Byeon HJ, Seo KW. Inertial migration of spherical elastic phytoplankton in pipe flow. Exp Fluids. 2014;55:1742.
Chengala A, Hondzo M, Sheng J. Microalga propels along vorticity direction in a shear flow. Phys Rev E. 2013;87(5):052704.
You J, Mallery K, Mashek DG, Sanders M, Hong J, Hondzo M. Microalgal swimming signatures and neutral lipids production across growth phases. Biotechnol Bioeng. 2020;117(4):970–80.
Heydt M, Rosenhahn A, Grunze M, Pettitt M, Callow M, Callow J. Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces. J Adhes. 2007;83(5):417–30.
Heydt M, Divós P, Grunze M, Rosenhahn A. Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur Phys J E. 2009;30:141–8.
Heydt M, Pettitt M, Cao X, Callow M, Callow J, Grunze M, et al. Settlement behavior of zoospores of Ulva linza during surface selection studied by digital holographic microscopy. Biointerphases. 2012;7:33.
Weiße S, Heddergott N, Heydt M, Pflästerer D, Maier T, Haraszti T, et al. A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy. PLoS One. 2012;7(5):e37296.
Thornton KL, Butler JK, Davis SJ, Baxter BK, Wilson LG. Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments. Nat Commun. 2020;11:4453.
Findlay RC, Osman M, Spence KA, Kaye PM, Walrad PB, Wilson LG. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective Leishmania parasites. Elife. 2021;10:e65051.
Pal D, Amyot M, Liang C, Ariya PA. Real-time 4D tracking of airborne virus-laden droplets and aerosols. Commun Eng. 2023;2:41.
Seo S, Su TW, Tseng DK, Erlinger A, Ozcan A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip. 2009;9:777–87.
Seo S, Isikman SO, Sencan I, Mudanyali O, Su TW, Bishara W, et al. High-throughput lens-free blood analysis on a chip. Anal Chem. 2010;82(11):4621–7.
Vercruysse D, Dusa A, Stahl R, Vanmeerbeeck G, de Wijs K, Liu C, et al. Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer. Lab Chip. 2015;15:1123–32.
Park JH, Go T, Lee SJ. Label-free sensing and classification of old stored blood. Ann Biomed Eng. 2017;45(11):2563–73.
Singh DK, Ahrens CC, Li W, Vanapalli SA. Label-free fingerprinting of tumor cells in bulk flow using inline digital holographic microscopy. Biomed Opt Express. 2017;8(2):536–54.
Buzalewicz I, Kujawińska M, Krauze W, Podbielska H. Novel perspectives on the characterization of species-dependent optical signatures of bacterial colonies by digital holography. PLoS One. 2016;11(3):e0150449.
Song C, Chen Z, Zheng X, Yang S, Duan X, Jiang Y, et al. Growth characteristic analysis of Haematococcus pluvialis in a microfluidic chip using digital in-line holographic flow cytometry. Anal Chem. 2022;94(15):5769–75.
Go T, Byeon H, Lee SJ. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning. Biosens Bioelectron. 2018;103:12–8.
Go T, Kim JH, Byeon H, Lee SJ. Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells. J Biophotonics. 2018;11(9):e201800101.
Li Y, Cornelis B, Dusa A, Vanmeerbeeck G, Vercruysse D, Sohn E, et al. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry. Comput Biol Med. 2018;96:147–56.
Singh DK, Ahrens CC, Li W, Vanapalli SA. Label-free, high-throughput holographic screening and enumeration of tumor cells in blood. Lab Chip. 2017;17(17):2920–32.
Chen D, Wang Z, Chen K, Zeng Q, Wang L, Xu X, et al. Classification of unlabeled cells using lensless digital holographic images and deep neural networks. Quant Imaging Med Surg. 2021;11(9):4137.
Gangadhar A, Sari-Sarraf H, Vanapalli SA. Deep learning assisted holography microscopy for in-flow enumeration of tumor cells in blood. RSC Adv. 2023;13(7):4222–35.
Feizi A, Zhang Y, Greenbaum A, Guziak A, Luong M, Chan RYL, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab Chip. 2016;16(22):4350–8.
Sanborn D, He R, Feng L, Hong J. In situ biological particle analyzer based on digital inline holography. Biotechnol Bioeng. 2023;120(5):1399–410.
O’Connor T, Rawat S, Markman A, Javidi B. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices. Appl Opt. 2018;57(7):B197–204.
Wang Y, Ju P, Wang S, Su J, Zhai W, Wu C. Identification of living and dead microalgae cells with digital holography and verified in the East China Sea. Mar Pollut Bull. 2021;163:111927.
Terbe D, Orzó L, Zarándy Á. Classification of holograms with 3D-CNN. Sensors. 2022;22(21):8366.
Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics. 2018;12:578–89.
Cacace T, Bianco V, Ferraro P. Quantitative phase imaging trends in biomedical applications. Opt Lasers Eng. 2020;135:106188.
Nguyen TL, Pradeep S, Judson-Torres RL, Reed J, Teitell MA, Zangle TA. Quantitative phase imaging: recent advances and expanding potential in biomedicine. ACS Nano. 2022;16(8):11516–44.
Merola F, Memmolo P, Miccio L, Savoia R, Mugnano M, Fontana A, et al. Tomographic flow cytometry by digital holography. Light Sci Appl. 2017;6(4):e16241.
Balasubramani V, Kuś A, Tu HY, Cheng CJ, Baczewska M, Krauze W, et al. Holographic tomography: techniques and biomedical applications. Appl Opt. 2021;60(10):B65–80.
Donnarumma D, Brodoline A, Alexandre D, Gross M. 4D holographic microscopy of zebrafish larvae microcirculation. Opt Express. 2016;24(23):26887–900.
Brodoline A, Rawat N, Alexandre D, Cubedo N, Gross M. 4D compressive sensing holographic microscopy imaging of small moving objects. Opt Lett. 2019;44(11):2827–30.
Brodoline A, Rawat N, Alexandre D, Cubedo N, Gross M. 4D compressive sensing holographic imaging of small moving objects with multiple illuminations. Appl Opt. 2019;58(34):G127–34.
Dwapanyin GO, Chow DJ, Tan TC, Dubost NS, Morizet JM, Dunning KR, et al. Investigation of refractive index dynamics during in vitro embryo development using off-axis digital holographic microscopy. Biomed Opt Express. 2023;14(7):3327–42.
Li H, Chen X, Chi Z, Mann C, Razi A. Deep DIH: single-shot digital in-line holography reconstruction by deep learning. IEEE Access. 2020;8:202648–59.
Hao J, Lin X, Lin Y, Song H, Chen R, Chen M, et al. Lensless phase retrieval based on deep learning used in holographic data storage. Opt Lett. 2021;46(17):4168–71.
Claus D, Iliescu D, Bryanston-Cross P. Quantitative space-bandwidth product analysis in digital holography. Appl Opt. 2011;50(34):H116–27.
Rubart M. Two-photon microscopy of cells and tissue. Circ Res. 2004;95(12):1154–66.
Tozer GM, Ameer-Beg SM, Baker J, Barber PR, Hill SA, Hodgkiss RJ, et al. Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv Drug Deliv Rev. 2005;57(1):135–52.
Heintzmann R, Huser T. Super-resolution structured illumination microscopy. Chem Rev. 2017;117(23):13890–908.
Olarte OE, Andilla J, Gualda EJ, Loza-Alvarez P. Light-sheet microscopy: a tutorial. Adv Opt Photonics. 2018;10(1):111–79.
Wang Z, Millet L, Mir M, Ding H, Unarunotai S, Rogers J, et al. Spatial light interference microscopy (SLIM). Opt Express. 2011;19(2):1016–26.
Preza C, Snyder DL, Conchello JA. Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy. JOSA A. 1999;16(9):2185–99.
Bochdansky AB, Jericho MH, Herndl GJ. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particles to a depth of 6000 m. Methods. 2013;11(1):28–40.
MacNeil L, Desai DK, Costa M, LaRoche J. Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf. Sci Rep. 2022;12(1):13078.
Corman R, Boutu W, Campalans A, Radicella P, Duarte J, Kholodtsova M, et al. Lensless microscopy platform for single cell and tissue visualization. Biomed Opt Express. 2020;11(5):2806–17.
Moon I, Javidi B. Three-dimensional identification of stem cells by computational holographic imaging. J R Soc Interface. 2007;4(13):305–13.
Delikoyun K, Yaman S, Yilmaz E, Sarigil O, Anil-Inevi M, Telli K, et al. HologLev: a hybrid magnetic levitation platform integrated with lensless holographic microscopy for density-based cell analysis. Acs Sens. 2021;6(6):2191–201.
Greenbaum A, Zhang Y, Feizi A, Chung PL, Luo W, Kandukuri SR, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci Transl Med. 2014;6(267):267ra175.
Rong L, Latychevskaia T, Chen C, Wang D, Yu Z, Zhou X, et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue. Sci Rep. 2015;5:8445.
Dubois F, Yourassowsky C, Monnom O, Legros JC, Debeir O, van Ham P, et al. Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. J Biomed Opt. 2006;11(5):054032.