Connect with us

Tech

Digital in-line holographic microscopy for label-free identification and tracking of biological cells – Military Medical Research

Published

on

Digital in-line holographic microscopy for label-free identification and tracking of biological cells – Military Medical Research

  • Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science. 2003;300(5616):82–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7(8):603–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spiller DG, Wood CD, Rand DA, White MR. Measurement of single-cell dynamics. Nature. 2010;465(7299):736–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cierpka C, Kähler CJ. Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J Vis. 2012;15:1–31.

    Article 
    CAS 

    Google Scholar
     

  • Morris JD, Payne CK. Microscopy and cell biology: new methods and new questions. Ann Rev Phys Chem. 2019;70:199–218.

    Article 
    CAS 

    Google Scholar
     

  • Gravesen P, Branebjerg J, Jensen OS. Microfluidics – a review. J Micromech Microeng. 1993;3(4):168.

    Article 
    CAS 

    Google Scholar
     

  • Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech. 2004;36:381–411.

    Article 

    Google Scholar
     

  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samiei E, Tabrizian M, Hoorfar M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip. 2016;16(13):2376–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Hong XZ, Li YW, Li Y, Wang J, Chen P, et al. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res. 2022;9(1):11.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupire J, Socol M, Viallat A. Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci U S A. 2012;109(51):20808–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng NF, Ristenpart WD. Mechanical response of red blood cells entering a constriction. Biomicrofluidics. 2014;8(6):064123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lansche C, Dasanna AK, Quadt K, Fröhlich B, Missirlis D, Tétard M, et al. The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Commun Biol. 2018;1:211.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atwell S, Badens C, Charrier A, Helfer E, Viallat A. Dynamics of individual red blood cells under shear flow: a way to discriminate deformability alterations. Front Physiol. 2022;12:775584.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Recktenwald SM, Graessel K, Maurer FM, John T, Gekle S, Wagner C. Red blood cell shape transitions and dynamics in time-dependent capillary flows. Biophys J. 2022;121(1):23–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darrin M, Samudre A, Sahun M, Atwell S, Badens C, Charrier A, et al. Classification of red cell dynamics with convolutional and recurrent neural networks: a sickle cell disease case study. Sci Rep. 2023;13(1):745.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egeblad M, Ewald AJ, Askautrud HA, Truitt ML, Welm BE, Bainbridge E, et al. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Models Mech. 2008;1(2–3):155–67.

    Article 

    Google Scholar
     

  • Renaud O, Herbomel P, Kissa K. Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells. Nat Protoc. 2011;6(12):1897–904.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carey SP, Kraning-Rush CM, Williams RM, Reinhart-King CA. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 2012;33(16):4157–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elliott AD. Confocal microscopy: principles and modern practices. Curr Protoc Cytom. 2020;92(1):e68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agero U, Monken C, Ropert C, Gazzinelli R, Mesquita O. Cell surface fluctuations studied with defocusing microscopy. Phys Rev E. 2003;67(5):051904.

    Article 
    CAS 

    Google Scholar
     

  • Etcheverry S, Gallardo MJ, Solano P, Suwalsky M, Mesquita ON, Saavedra C. Real-time study of shape and thermal fluctuations in the echinocyte transformation of human erythrocytes using defocusing microscopy. J Biomed Opt. 2012;17(10):106013.

    Article 
    PubMed 

    Google Scholar
     

  • Roma PM, Siman L, Hissa B, Agero U, Braga EM, Mesquita ON. Profiling of individual human red blood cells under osmotic stress using defocusing microscopy. J Biomed Opt. 2016;21(9):090505.

    Article 

    Google Scholar
     

  • Gabor D. A new microscopic principle. Nature. 1948;161(4098):777–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murata S, Yasuda N. Potential of digital holography in particle measurement. Opt Laser Technol. 2000;32(7–8):567–74.

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Sucerquia J, Xu W, Jericho SK, Klages P, Jericho MH, Kreuzer HJ. Digital in-line holographic microscopy. Appl Opt. 2006;45(5):836–50.

    Article 
    PubMed 

    Google Scholar
     

  • Sheng J, Malkiel E, Katz J. Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt. 2006;45(16):3893–901.

    Article 
    PubMed 

    Google Scholar
     

  • Kim MK. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010;1(1):018005.


    Google Scholar
     

  • Choi YS, Seo KW, Sohn MH, Lee SJ. Advances in digital holographic micro-PTV for analyzing microscale flows. Opt Lasers Eng. 2012;50(1):39–45.

    Article 

    Google Scholar
     

  • Yu X, Hong J, Liu C, Kim MK. Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt Eng. 2014;53(11):112306.

    Article 

    Google Scholar
     

  • Memmolo P, Miccio L, Paturzo M, Di Caprio G, Coppola G, Netti PA, et al. Recent advances in holographic 3D particle tracking. Adv Opt Photonics. 2015;7(4):713–55.

    Article 

    Google Scholar
     

  • Wu Y, Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods. 2018;136:4–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu W, Jericho M, Meinertzhagen I, Kreuzer H. Digital in-line holography of microspheres. Appl Opt. 2002;41(25):5367–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng J, Malkiel E, Katz J. Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer. Exp Fluids. 2008;45:1023–35.

    Article 

    Google Scholar
     

  • Choi YS, Lee SJ. Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow. Microfluid Nanofluidics. 2010;9:819–29.

    Article 
    CAS 

    Google Scholar
     

  • Katz J, Sheng J. Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech. 2010;42:531–55.

    Article 

    Google Scholar
     

  • Choi YS, Seo KW, Lee SJ. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab Chip. 2011;11(3):460–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo KW, Choi YS, Lee SJ. Dean-coupled inertial migration and transient focusing of particles in a curved microscale pipe flow. Exp Fluids. 2012;53(6):1867–77.

    Article 
    CAS 

    Google Scholar
     

  • Seo KW, Byeon HJ, Huh HK, Lee SJ. Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids. RSC Adv. 2014;4:3512–20.

    Article 
    CAS 

    Google Scholar
     

  • Lee SH, Roichman Y, Yi GR, Kim SH, Yang SM, van Blaaderen A, et al. Characterizing and tracking single colloidal particles with video holographic microscopy. Opt Express. 2007;15(26):18275–82.

    Article 
    PubMed 

    Google Scholar
     

  • Fung J, Martin KE, Perry RW, Kaz DM, McGorty R, Manoharan VN. Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy. Opt Express. 2011;19(9):8051–65.

    Article 
    PubMed 

    Google Scholar
     

  • Verrier N, Fournier C, Fournel T. 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction. Appl Opt. 2015;54(16):4996–5002.

    Article 
    PubMed 

    Google Scholar
     

  • Ling H, Srinivasan S, Golovin K, McKinley GH, Tuteja A, Katz J. High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J Fluid Mech. 2016;801:670–703.

    Article 
    CAS 

    Google Scholar
     

  • Wang L, Wu Y, Wu X, Cen K. Measurement of dynamics of laser-induced cavitation around nanoparticle with high-speed digital holographic microscopy. Exp Therm Fluid Sci. 2021;121:110266.

    Article 
    CAS 

    Google Scholar
     

  • Go T, Kim J, Lee SJ. Three-dimensional volumetric monitoring of settling particulate matters on a leaf using digital in-line holographic microscopy. J Hazard Mater. 2021;404(Pt A):124116.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Kim J, Kim Y, Go T, Lee SJ. Accelerated settling velocity of airborne particulate matter on hairy plant leaves. J Environ Manage. 2023;332:117313.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu W, Jericho M, Meinertzhagen I, Kreuzer H. Digital in-line holography for biological applications. Proc Natl Acad Sci U S A. 2001;98(20):11301–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jericho S, Garcia-Sucerquia J, Xu W, Jericho M, Kreuzer H. Submersible digital in-line holographic microscope. Rev Sci Instrum. 2006;77(4):043706.

    Article 

    Google Scholar
     

  • Rotermund L, Samson J, Kreuzer H. A submersible holographic microscope for 4D in-situ studies of micro-organisms in the ocean with intensity and quantitative phase imaging. J Marine Sci Res Dev. 2016;6(1):1000181.


    Google Scholar
     

  • Liu Z, Takahashi T, Lindsay D, Thevar T, Sangekar M, Watanabe HK, et al. Digital in-line holography for large-volume analysis of vertical motion of microscale marine plankton and other particles. IEEE J Ocean Eng. 2021;46(4):1248–60.

    Article 

    Google Scholar
     

  • Repetto L, Piano E, Pontiggia C. Lensless digital holographic microscope with light-emitting diode illumination. Opt Lett. 2004;29(10):1132–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariën J, Stahl R, Lambrechts A, van Hoof C, Yurt A. Color lens-free imaging using multi-wavelength illumination based phase retrieval. Opt Express. 2020;28(22):33002–18.

    Article 
    PubMed 

    Google Scholar
     

  • Xiong Z, Potter CJ, McLeod E. High-speed lens-free holographic sensing of protein molecules using quantitative agglutination assays. ACS Sensors. 2021;6(3):1208–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J-P, Tahara T, Hayasaki Y, Poon TC. Incoherent digital holography: a review. Appl Sci. 2018;8(1):143.

    Article 

    Google Scholar
     

  • Rosen J, Vijayakumar A, Kumar M, Rai MR, Kelner R, Kashter Y, et al. Recent advances in self-interference incoherent digital holography. Adv Opt Photonics. 2019;11(1):1–66.

    Article 

    Google Scholar
     

  • Tahara T, Zhang Y, Rosen J, Anand V, Cao L, Wu J, et al. Roadmap of incoherent digital holography. Appl Phys B. 2022;128:193.

    Article 
    CAS 

    Google Scholar
     

  • Tahara T. Polarization-filterless polarization-sensitive polarization-multiplexed phase-shifting incoherent digital holography (P4IDH). Opt Lett. 2023;48(15):3881–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang M, Hu CP, Lam P, Wyant JC. High precision deformation measurement by digital phase shifting holographic interferometry. Appl Opt. 1985;24(22):3780–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Awatsuji Y, Tahara T, Kaneko A, Koyama T, Nishio K, Ura S, et al. Parallel two-step phase-shifting digital holography. Appl Opt. 2008;47(19):D183–9.

    Article 
    PubMed 

    Google Scholar
     

  • Tahara T, Awatsuji Y, Shimozato Y, Kakue T, Nishio K, Ura S, et al. Single-shot polarization-imaging digital holography based on simultaneous phase-shifting interferometry. Opt Lett. 2011;36(16):3254–6.

    Article 
    PubMed 

    Google Scholar
     

  • Sanz M, Picazo-Bueno JA, García J, Micó V. Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm. Opt Express. 2015;23(16):21352–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farthing NE, Findlay RC, Jikeli JF, Walrad PB, Bees MA, Wilson LG. Simultaneous two-color imaging in digital holographic microscopy. Opt Express. 2017;25(23):28489–500.

    Article 
    PubMed 

    Google Scholar
     

  • Min J, Zhou M, Yuan X, Wen K, Yu X, Peng T, et al. Optical thickness measurement with single-shot dual-wavelength in-line digital holography. Opt Lett. 2018;43(18):4469–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Stangner T, Wiklund K, Andersson M. Object plane detection and phase retrieval from single-shot holograms using multi-wavelength in-line holography. Appl Opt. 2018;57(33):9855–62.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SH, Grier DG. Holographic microscopy of holographically trapped three-dimensional structures. Opt Express. 2007;15(4):1505–12.

    Article 
    PubMed 

    Google Scholar
     

  • Cheong FC, Xiao K, Grier DG. Characterizing individual milk fat globules with holographic video microscopy. J Dairy Sci. 2009;92(1):95–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheong FC, Krishnatreya BJ, Grier DG. Strategies for three-dimensional particle tracking with holographic video microscopy. Opt Express. 2010;18(13):13563–73.

    Article 
    PubMed 

    Google Scholar
     

  • Cheong FC, Grier DG. Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy. Opt Express. 2010;18(7):6555–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fugal JP, Schulz TJ, Shaw RA. Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas Sci Technol. 2009;20(7):075501.

    Article 

    Google Scholar
     

  • Pedrini G, Schedin S, Tiziani HJ. Spatial filtering in digital holographic microscopy. J Mod Opt. 2000;47(8):1447–54.

    Article 

    Google Scholar
     

  • Malkiel E, Abras JN, Katz J. Automated scanning and measurements of particle distributions within a holographic reconstructed volume. Meas Sci Technol. 2004;15(4):601.

    Article 
    CAS 

    Google Scholar
     

  • Lee SJ, Seo KW, Choi YS, Sohn MH. Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy. Meas Sci Technol. 2011;22:064004.

    Article 

    Google Scholar
     

  • Singh DK, Panigrahi P. Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles. Opt Express. 2010;18(3):2426–48.

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Sucerquia J, Ramírez JAH, Prieto DV. Reduction of speckle noise in digital holography by using digital image processing. Optik. 2005;116(1):44–8.

    Article 

    Google Scholar
     

  • Yang Y, Kang BS, Choo YJ. Application of the correlation coefficient method for determination of the focal plane to digital particle holography. Appl Opt. 2008;47(6):817–24.

    Article 
    PubMed 

    Google Scholar
     

  • Kukrer O, Hocanin A. Frequency-response-shaped LMS adaptive filter. Digit Signal Process. 2006;16(6):855–69.

    Article 

    Google Scholar
     

  • Zajtsev AK, Lin SH, Hsu KY. Sidelobe suppression of spectral response in holographic optical filter. Opt Commun. 2001;190(1–6):103–8.

    Article 
    CAS 

    Google Scholar
     

  • Sharma A, Sheoran G, Jaffery Z. Improvement of signal-to-noise ratio in digital holography using wavelet transform. Opt Lasers Eng. 2008;46(1):42–7.

    Article 

    Google Scholar
     

  • Uzan A, Rivenson Y, Stern A. Speckle denoising in digital holography by nonlocal means filtering. Appl Opt. 2013;52(1):A195–200.

    Article 
    PubMed 

    Google Scholar
     

  • Molaei M, Sheng J. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm. Opt Express. 2014;22(26):32119–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon W, Jeong W, Son K, Yang H. Speckle noise reduction for digital holographic images using multi-scale convolutional neural networks. Opt Lett. 2018;43(17):4240–3.

    Article 
    PubMed 

    Google Scholar
     

  • Bai C, Peng T, Min J, Li R, Zhou Y, Yao B. Dual-wavelength in-line digital holography with untrained deep neural networks. Photonics Res. 2021;9(12):2501–10.

    Article 

    Google Scholar
     

  • Chen L, Chen X, Cui H, Long Y, Wu J. Image enhancement in lensless inline holographic microscope by inter-modality learning with denoising convolutional neural network. Opt Commun. 2021;484:126682.

    Article 
    CAS 

    Google Scholar
     

  • Bishara W, Su TW, Coskun AF, Ozcan A. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt Express. 2010;18(11):11181–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byeon H, Go T, Lee SJ. Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view. Opt Laser Technol. 2019;113:77–86.

    Article 
    CAS 

    Google Scholar
     

  • Luo Z, Yurt A, Stahl R, Lambrechts A, Reumers V, Braeken D, et al. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks. Opt Express. 2019;27(10):13581–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee H, Kim J, Kim J, Jeon P, Lee SA, Kim D. Noniterative sub-pixel shifting super-resolution lensless digital holography. Opt Express. 2021;29(19):29996–30006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Potter CJ, Hu Y, Xiong Z, Wang J, McLeod E. Point-of-care SARS-CoV-2 sensing using lens-free imaging and a deep learning-assisted quantitative agglutination assay. Lab Chip. 2022;22(19):3744–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman JW. Introduction to Fourier optics. Colorado: Roberts and Company Publishers; 2005.


    Google Scholar
     

  • Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Amsterdam: Elsevier; 2013.


    Google Scholar
     

  • Barton JJ. Photoelectron holography. Phys Rev Lett. 1988;61(12):1356–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreuzer H, Nakamura K, Wierzbicki A, Fink H, Schmid H. Theory of the point source electron microscope. Ultramicroscopy. 1992;45(3–4):381–403.

    Article 

    Google Scholar
     

  • Kreuzer H. Low energy electron point source microscopy. Micron. 1995;26(6):503–9.

    Article 

    Google Scholar
     

  • Delen N, Hooker B. Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach. JOSA A. 1998;15(4):857–67.

    Article 

    Google Scholar
     

  • Veerman JA, Rusch JJ, Urbach HP. Calculation of the Rayleigh-Sommerfeld diffraction integral by exact integration of the fast oscillating factor. JOSA A. 2005;22(4):636–46.

    Article 
    PubMed 

    Google Scholar
     

  • Shen F, Wang A. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Appl Opt. 2006;45(6):1102–10.

    Article 
    PubMed 

    Google Scholar
     

  • Wilson L, Zhang R. 3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation. Opt Express. 2012;20(15):16735–44.

    Article 

    Google Scholar
     

  • Sheng J, Malkiel E, Katz J, Adolf J, Belas R, Place AR. Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. Proc Natl Acad Sci U S A. 2007;104(44):17512–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratcliffe JA. Some aspects of diffraction theory and their application to the ionosphere. Rep Prog Phys. 1956;19:188.

    Article 

    Google Scholar
     

  • Koren G, Polack F, Joyeux D. Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints. JOSA A. 1993;10(3):423–33.

    Article 

    Google Scholar
     

  • Latychevskaia T, Fink HW. Solution to the twin image problem in holography. Phys Rev Lett. 2007;98(23):233901.

    Article 
    PubMed 

    Google Scholar
     

  • Ling H, Katz J. Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms. Appl Opt. 2014;53(27):G1–11.

    Article 
    PubMed 

    Google Scholar
     

  • Oe K, Nomura T. Twin-image reduction method using a diffuser for phase imaging in-line digital holography. Appl Opt. 2018;57(20):5652–6.

    Article 
    PubMed 

    Google Scholar
     

  • Rivenson Y, Zhang Y, Günaydın H, Teng D, Ozcan A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl. 2018;7:17141.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latychevskaia T. Iterative phase retrieval for digital holography: tutorial. JOSA A. 2019;36(12):D31–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shangraw M, Ling H. Separating twin images in digital holographic microscopy using weak scatterers. Appl Opt. 2021;60(3):626–34.

    Article 
    PubMed 

    Google Scholar
     

  • Langehanenberg P, Kemper B, Dirksen D, von Bally G. Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl Opt. 2008;47(19):D176–82.

    Article 
    PubMed 

    Google Scholar
     

  • Memmolo P, Distante C, Paturzo M, Finizio A, Ferraro P, Javidi B. Automatic focusing in digital holography and its application to stretched holograms. Opt Lett. 2011;36(10):1945–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson T, Bedrossian M, Serabyn E, Lindensmith C, Nadeau JL. Using the Gouy phase anomaly to localize and track bacteria in digital holographic microscopy 4D images. JOSA A. 2021;38(2):A11–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Memmolo P, Paturzo M, Javidi B, Netti PA, Ferraro P. Refocusing criterion via sparsity measurements in digital holography. Opt Lett. 2014;39(16):4719–22.

    Article 
    PubMed 

    Google Scholar
     

  • Yeo T, Ong S, Sinniah R. Autofocusing for tissue microscopy. Image Vis Comput. 1993;11(10):629–39.

    Article 

    Google Scholar
     

  • Brenner JF, Dew BS, Horton JB, King T, Neurath PW, Selles WD. An automated microscope for cytologic research a preliminary evaluation. J Histochem Cytochem. 1976;24(1):100–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trusiak M, Picazo-Bueno JA, Zdankowski P, Micó V. DarkFocus: numerical autofocusing in digital in-line holographic microscopy using variance of computational dark-field gradient. Opt Lasers Eng. 2020;134:106195.

    Article 

    Google Scholar
     

  • Li W, Loomis NC, Hu Q, Davis CS. Focus detection from digital in-line holograms based on spectral L1 norms. JOSA A. 2007;24(10):3054–62.

    Article 
    PubMed 

    Google Scholar
     

  • Kumar SS, Sun Y, Zou S, Hong J. 3D holographic observatory for long-term monitoring of complex behaviors in drosophila. Sci Rep. 2016;6:33001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren Z, Xu Z, Lam EY. Learning-based nonparametric autofocusing for digital holography. Optica. 2018;5(4):337–44.

    Article 

    Google Scholar
     

  • Wu Y, Rivenson Y, Zhang Y, Wei Z, Günaydin H, Lin X, et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica. 2018;5(6):704–10.

    Article 

    Google Scholar
     

  • Lee SJ, Yoon GY, Go T. Deep learning-based accurate and rapid tracking of 3D positional information of microparticles using digital holographic microscopy. Exp Fluids. 2019;60:170.

    Article 
    CAS 

    Google Scholar
     

  • Pitkäaho T, Manninen A, Naughton TJ. Focus prediction in digital holographic microscopy using deep convolutional neural networks. Appl Opt. 2019;58(5):A202–8.

    Article 
    PubMed 

    Google Scholar
     

  • Montoya M, Lopera MJ, Gómez-Ramírez A, Buitrago-Duque C, Pabón-Vidal A, Herrera-Ramirez J, et al. FocusNET: an autofocusing learning-based model for digital lensless holographic microscopy. Opt Lasers Eng. 2023;165:107546.

    Article 

    Google Scholar
     

  • Baek S, Lee S. A new two-frame particle tracking algorithm using match probability. Exp Fluids. 1996;22:23–32.

    Article 
    CAS 

    Google Scholar
     

  • Crocker JC, Grier DG. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci. 1996;179(1):298–310.

    Article 
    CAS 

    Google Scholar
     

  • Allan DB, Caswell T, Keim N, van der Wel C, Verweij R. Soft-matter/trackpy: v0.6.1. Zenodo; 2023. https://zenodo.org/records/7670439.

  • Hassan Y, Canaan R. Full-field bubbly flow velocity measurements using a multiframe particle tracking technique. Exp Fluids. 1991;12:49–60.

    Article 
    CAS 

    Google Scholar
     

  • Malik N, Dracos T, Papantoniou D. Particle tracking velocimetry in three-dimensional flows. Exp Fluids. 1993;15:279–94.

    Article 
    CAS 

    Google Scholar
     

  • Ouellette NT, Xu H, Bodenschatz E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp Fluids. 2006;40:301–13.

    Article 

    Google Scholar
     

  • Li D, Zhang Y, Sun Y, Yan W. A multi-frame particle tracking algorithm robust against input noise. Meas Sci Technol. 2008;19(10):105401.

    Article 

    Google Scholar
     

  • Cierpka C, Lütke B, Kähler CJ. Higher order multi-frame particle tracking velocimetry. Exp Fluids. 2013;54:1533.

    Article 

    Google Scholar
     

  • Labonté G. Neural network reconstruction of fluid flows from tracer-particle displacements. Exp Fluids. 2001;30:399–409.

    Article 

    Google Scholar
     

  • Mallery K, Shao S, Hong J. Dense particle tracking using a learned predictive model. Exp Fluids. 2020;61:223.

    Article 

    Google Scholar
     

  • Dixon L, Cheong FC, Grier DG. Holographic deconvolution microscopy for high-resolution particle tracking. Opt Express. 2011;19(17):16410–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latychevskaia T, Fink HW. Holographic time-resolved particle tracking by means of three-dimensional volumetric deconvolution. Opt Express. 2014;22(17):20994–1003.

    Article 
    PubMed 

    Google Scholar
     

  • Toloui M, Hong J. High fidelity digital inline holographic method for 3D flow measurements. Opt Express. 2015;23(21):27159–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mallery K, Hong J. Regularized inverse holographic volume reconstruction for 3D particle tracking. Opt Express. 2019;27(13):18069–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen N, Wang C, Heidrich W. Snapshot space-time holographic 3D particle tracking velocimetry. Laser Photonics Rev. 2021;15(8):2100008.

    Article 

    Google Scholar
     

  • Sun B, Ahmed A, Atkinson C, Soria J. A novel 4D digital holographic PIV/PTV (4D-DHPIV/PTV) methodology using iterative predictive inverse reconstruction. Meas Sci Technol. 2020;31(10):104002.

    Article 
    CAS 

    Google Scholar
     

  • Shao S, Mallery K, Kumar SS, Hong J. Machine learning holography for 3D particle field imaging. Opt Express. 2020;28(3):2987–99.

    Article 
    PubMed 

    Google Scholar
     

  • Wang K, Dou J, Kemao Q, Di J, Zhao J. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Opt Lett. 2019;44(19):4765–8.

    Article 
    PubMed 

    Google Scholar
     

  • Yin D, Gu Z, Zhang Y, Gu F, Nie S, Ma J, et al. Digital holographic reconstruction based on deep learning framework with unpaired data. IEEE Photonics J. 2019;12(2):3900312.


    Google Scholar
     

  • Jaferzadeh K, Fevens T. HoloPhaseNet: fully automated deep-learning-based hologram reconstruction using a conditional generative adversarial model. Biomed Opt Express. 2022;13(7):4032–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiriy SA, Rymov DA, Svistunov AS, Shifrina AV, Starikov RS, Cheremkhin PA. Generative adversarial neural network for 3D-hologram reconstruction. Laser Phys Lett. 2024;21(4):045201.

    Article 

    Google Scholar
     

  • Chen H, Huang L, Liu T, Ozcan A. Fourier imager network (FIN): a deep neural network for hologram reconstruction with superior external generalization. Light Sci Appl. 2022;11(1):254.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang L, Chen H, Liu T, Ozcan A. Self-supervised learning of hologram reconstruction using physics consistency. Nat Mach Intell. 2023;5:895–907.

    Article 

    Google Scholar
     

  • Sun H, Song B, Dong H, Reid B, Player MA, Watson J, et al. Visualization of fast-moving cells in vivo using digital holographic video microscopy. J Biomed Opt. 2008;13(1):014007.

    Article 
    PubMed 

    Google Scholar
     

  • Nette F, Guerra de Souza AC, Laskay T, Ohms M, Dömer D, Drömann D, et al. Method for simultaneous tracking of thousands of unlabeled cells within a transparent 3D matrix. PLoS One. 2022;17(6):e0270456.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi YS, Lee SJ. Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy. Appl Opt. 2009;48(16):2983–90.

    Article 
    PubMed 

    Google Scholar
     

  • Choi YS, Lee SJ. Inertial migration of erythrocytes in low-viscosity and high-shear rate microtube flows: aplication simple digital in-line holographic microscopy. J Biomech. 2012;45(15):2706–9.

    Article 
    PubMed 

    Google Scholar
     

  • Seo KW, Ha YR, Lee SJ. Vertical focusing and cell ordering in a microchannel via viscoelasticity: applications for cell monitoring using a digital holographic microscopy. Appl Phys Lett. 2014;104(21):213702.

    Article 

    Google Scholar
     

  • Go T, Byeon H, Lee SJ. Focusing and alignment of erythrocytes in a viscoelastic medium. Sci Rep. 2017;7:41162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byeon H, Go T, Lee SJ. Digital stereo-holographic microscopy for studying three-dimensional particle dynamics. Opt Lasers Eng. 2018;105:6–13.

    Article 

    Google Scholar
     

  • Kim Y, Kim J, Seo E, Lee SJ. AI-based analysis of 3D position and orientation of red blood cells using a digital in-line holographic microscopy. Biosens Bioelectron. 2023;229:115232.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su TW, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci U S A. 2012;109(40):16018–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picazo-Bueno JA, Trindade K, Sanz M, Micó V. Design, calibration, and application of a robust, cost-effective, and high-resolution lensless holographic microscope. Sensors. 2022;22(2):553.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogalski M, Picazo-Bueno JA, Winnik J, Zdańkowski P, Micó V, Trusiak M. Accurate automatic object 4D tracking in digital in-line holographic microscopy based on computationally rendered dark fields. Sci Rep. 2022;12:12909.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R, Colin R, et al. Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat Commun. 2015;6:7985.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su TW, Choi I, Feng J, Huang K, Ozcan A. High-throughput analysis of horse sperms’ 3D swimming patterns using computational on-chip imaging. Anim Reprod Sci. 2016;169:45–55.

    Article 
    PubMed 

    Google Scholar
     

  • Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science. 2021;371(6525):eabd4914.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vater SM, Weiße S, Maleschlijski S, Lotz C, Koschitzki F, Schwartz T, et al. Swimming behavior of Pseudomonas aeruginosa studied by holographic 3D tracking. PLoS One. 2014;9(1):e87765.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheong FC, Wong CC, Gao Y, Nai MH, Cui Y, Park S, et al. Rapid, high-throughput tracking of bacterial motility in 3D via phase-contrast holographic video microscopy. Biophys J. 2015;108(5):1248–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai CW, Ahmadzadegan A, Ardekani A, Narsimhan V. A forward reconstruction, holographic method to overcome the lens effect during 3D detection of semi-transparent, non-spherical particles. Soft Matter. 2023;19(1):115–27.

    Article 
    CAS 

    Google Scholar
     

  • Wang A, Garmann RF, Manoharan VN. Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy. Opt Express. 2016;24(21):23719–25.

    Article 
    PubMed 

    Google Scholar
     

  • Kühn MJ, Schmidt FK, Farthing NE, Rossmann FM, Helm B, Wilson LG, et al. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat Commun. 2018;9(1):5369.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molaei M, Barry M, Stocker R, Sheng J. Failed escape: solid surfaces prevent tumbling of Escherichia coli. Phys Rev Lett. 2014;113(6):068103.

    Article 
    PubMed 

    Google Scholar
     

  • Molaei M, Sheng J. Succeed escape: flow shear promotes tumbling of Escherichia coli near a solid surface. Sci Rep. 2016;6:35290.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi M, Gong X, Wu B, Zhang G. Landing dynamics of swimming bacteria on a polymeric surface: effect of surface properties. Langmuir. 2017;33(14):3525–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bianchi S, Saglimbeni F, Di Leonardo R. Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys Rev X. 2017;7(1):011010.


    Google Scholar
     

  • Qi M, Song Q, Zhao J, Ma C, Zhang G, Gong X. Three-dimensional bacterial behavior near dynamic surfaces formed by degradable polymers. Langmuir. 2017;33(45):13098–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng Q, Zhou X, Wang Z, Xie Q, Ma C, Zhang G, et al. Three-dimensional bacterial motions near a surface investigated by digital holographic microscopy: effect of surface stiffness. Langmuir. 2019;35(37):12257–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hook AL, Flewellen JL, Dubern JF, Carabelli AM, Zaid IM, Berry RM, et al. Simultaneous tracking of Pseudomonas aeruginosa motility in liquid and at the solid-liquid interface reveals differential roles for the flagellar stators. mSystems. 2019;4(5):e00390–e419.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elius M, Boyle K, Chang WS, Moisander PH, Ling H. Comparison of three-dimensional motion of bacteria with and without wall accumulation. Phys Rev E. 2023;108(1):014409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He X, Zhang W, Feng P, Mai Z, Gong X, Zhang G. Role of surface coverage of sessile probiotics in their interplay with pathogen bacteria investigated by digital holographic microscopy. Langmuir. 2023;39(48):17308–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sohn MH, Seo KW, Choi YS, Lee SJ, Kang YS, Kang YS. Determination of the swimming trajectory and speed of chain-forming dinoflagellate Cochlodinium polykrikoides with digital holographic particle tracking velocimetry. Mar Biol. 2011;158:561–70.

    Article 

    Google Scholar
     

  • Lee SJ, Go T, Byeon H. Three-dimensional swimming motility of microorganism in the near-wall region. Exp Fluids. 2016;57:26.

    Article 

    Google Scholar
     

  • Lewis NI, Xu W, Jericho SK, Kreuzer HJ, Jericho MH, Cembella AD. Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography. Phycologia. 2006;45(1):61–70.

    Article 

    Google Scholar
     

  • Sheng J, Malkiel E, Katz J, Adolf JE, Place AR. A dinoflagellate exploits toxins to immobilize prey prior to ingestion. Proc Natl Acad Sci U S A. 2010;107(5):2082–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sohn MH, Lim S, Seo KW, Lee SJ. Effect of ambient medium viscosity on the motility and flagella motion of Prorocentrum minimum (Dinophyceae). J Plankton Res. 2013;35(6):1294–304.

    Article 

    Google Scholar
     

  • Dharmawan AB, Mariana S, Scholz G, Hörmann P, Schulze T, Triyana K, et al. Nonmechanical parfocal and autofocus features based on wave propagation distribution in lensfree holographic microscopy. Sci Rep. 2021;11:3213.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu W, Jericho M, Kreuzer H, Meinertzhagen I. Tracking particles in four dimensions with in-line holographic microscopy. Opt Lett. 2003;28(3):164–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jericho S, Klages P, Nadeau J, Dumas E, Jericho M, Kreuzer H. In-line digital holographic microscopy for terrestrial and exobiological research. Planet Space Sci. 2010;58(4):701–5.

    Article 

    Google Scholar
     

  • Lee SJ, Byeon HJ, Seo KW. Inertial migration of spherical elastic phytoplankton in pipe flow. Exp Fluids. 2014;55:1742.

    Article 

    Google Scholar
     

  • Chengala A, Hondzo M, Sheng J. Microalga propels along vorticity direction in a shear flow. Phys Rev E. 2013;87(5):052704.

    Article 

    Google Scholar
     

  • You J, Mallery K, Mashek DG, Sanders M, Hong J, Hondzo M. Microalgal swimming signatures and neutral lipids production across growth phases. Biotechnol Bioeng. 2020;117(4):970–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heydt M, Rosenhahn A, Grunze M, Pettitt M, Callow M, Callow J. Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces. J Adhes. 2007;83(5):417–30.

    Article 
    CAS 

    Google Scholar
     

  • Heydt M, Divós P, Grunze M, Rosenhahn A. Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur Phys J E. 2009;30:141–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heydt M, Pettitt M, Cao X, Callow M, Callow J, Grunze M, et al. Settlement behavior of zoospores of Ulva linza during surface selection studied by digital holographic microscopy. Biointerphases. 2012;7:33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiße S, Heddergott N, Heydt M, Pflästerer D, Maier T, Haraszti T, et al. A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy. PLoS One. 2012;7(5):e37296.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thornton KL, Butler JK, Davis SJ, Baxter BK, Wilson LG. Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments. Nat Commun. 2020;11:4453.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Findlay RC, Osman M, Spence KA, Kaye PM, Walrad PB, Wilson LG. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective Leishmania parasites. Elife. 2021;10:e65051.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal D, Amyot M, Liang C, Ariya PA. Real-time 4D tracking of airborne virus-laden droplets and aerosols. Commun Eng. 2023;2:41.

    Article 
    PubMed Central 

    Google Scholar
     

  • Seo S, Su TW, Tseng DK, Erlinger A, Ozcan A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip. 2009;9:777–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo S, Isikman SO, Sencan I, Mudanyali O, Su TW, Bishara W, et al. High-throughput lens-free blood analysis on a chip. Anal Chem. 2010;82(11):4621–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vercruysse D, Dusa A, Stahl R, Vanmeerbeeck G, de Wijs K, Liu C, et al. Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer. Lab Chip. 2015;15:1123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park JH, Go T, Lee SJ. Label-free sensing and classification of old stored blood. Ann Biomed Eng. 2017;45(11):2563–73.

    Article 
    PubMed 

    Google Scholar
     

  • Singh DK, Ahrens CC, Li W, Vanapalli SA. Label-free fingerprinting of tumor cells in bulk flow using inline digital holographic microscopy. Biomed Opt Express. 2017;8(2):536–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buzalewicz I, Kujawińska M, Krauze W, Podbielska H. Novel perspectives on the characterization of species-dependent optical signatures of bacterial colonies by digital holography. PLoS One. 2016;11(3):e0150449.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song C, Chen Z, Zheng X, Yang S, Duan X, Jiang Y, et al. Growth characteristic analysis of Haematococcus pluvialis in a microfluidic chip using digital in-line holographic flow cytometry. Anal Chem. 2022;94(15):5769–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Go T, Byeon H, Lee SJ. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning. Biosens Bioelectron. 2018;103:12–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Go T, Kim JH, Byeon H, Lee SJ. Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells. J Biophotonics. 2018;11(9):e201800101.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Cornelis B, Dusa A, Vanmeerbeeck G, Vercruysse D, Sohn E, et al. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry. Comput Biol Med. 2018;96:147–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh DK, Ahrens CC, Li W, Vanapalli SA. Label-free, high-throughput holographic screening and enumeration of tumor cells in blood. Lab Chip. 2017;17(17):2920–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen D, Wang Z, Chen K, Zeng Q, Wang L, Xu X, et al. Classification of unlabeled cells using lensless digital holographic images and deep neural networks. Quant Imaging Med Surg. 2021;11(9):4137.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gangadhar A, Sari-Sarraf H, Vanapalli SA. Deep learning assisted holography microscopy for in-flow enumeration of tumor cells in blood. RSC Adv. 2023;13(7):4222–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feizi A, Zhang Y, Greenbaum A, Guziak A, Luong M, Chan RYL, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab Chip. 2016;16(22):4350–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanborn D, He R, Feng L, Hong J. In situ biological particle analyzer based on digital inline holography. Biotechnol Bioeng. 2023;120(5):1399–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Connor T, Rawat S, Markman A, Javidi B. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices. Appl Opt. 2018;57(7):B197–204.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Ju P, Wang S, Su J, Zhai W, Wu C. Identification of living and dead microalgae cells with digital holography and verified in the East China Sea. Mar Pollut Bull. 2021;163:111927.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terbe D, Orzó L, Zarándy Á. Classification of holograms with 3D-CNN. Sensors. 2022;22(21):8366.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics. 2018;12:578–89.

    Article 
    CAS 

    Google Scholar
     

  • Cacace T, Bianco V, Ferraro P. Quantitative phase imaging trends in biomedical applications. Opt Lasers Eng. 2020;135:106188.

    Article 

    Google Scholar
     

  • Nguyen TL, Pradeep S, Judson-Torres RL, Reed J, Teitell MA, Zangle TA. Quantitative phase imaging: recent advances and expanding potential in biomedicine. ACS Nano. 2022;16(8):11516–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merola F, Memmolo P, Miccio L, Savoia R, Mugnano M, Fontana A, et al. Tomographic flow cytometry by digital holography. Light Sci Appl. 2017;6(4):e16241.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balasubramani V, Kuś A, Tu HY, Cheng CJ, Baczewska M, Krauze W, et al. Holographic tomography: techniques and biomedical applications. Appl Opt. 2021;60(10):B65–80.

    Article 
    PubMed 

    Google Scholar
     

  • Donnarumma D, Brodoline A, Alexandre D, Gross M. 4D holographic microscopy of zebrafish larvae microcirculation. Opt Express. 2016;24(23):26887–900.

    Article 
    PubMed 

    Google Scholar
     

  • Brodoline A, Rawat N, Alexandre D, Cubedo N, Gross M. 4D compressive sensing holographic microscopy imaging of small moving objects. Opt Lett. 2019;44(11):2827–30.

    Article 

    Google Scholar
     

  • Brodoline A, Rawat N, Alexandre D, Cubedo N, Gross M. 4D compressive sensing holographic imaging of small moving objects with multiple illuminations. Appl Opt. 2019;58(34):G127–34.

    Article 
    PubMed 

    Google Scholar
     

  • Dwapanyin GO, Chow DJ, Tan TC, Dubost NS, Morizet JM, Dunning KR, et al. Investigation of refractive index dynamics during in vitro embryo development using off-axis digital holographic microscopy. Biomed Opt Express. 2023;14(7):3327–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Chen X, Chi Z, Mann C, Razi A. Deep DIH: single-shot digital in-line holography reconstruction by deep learning. IEEE Access. 2020;8:202648–59.

    Article 

    Google Scholar
     

  • Hao J, Lin X, Lin Y, Song H, Chen R, Chen M, et al. Lensless phase retrieval based on deep learning used in holographic data storage. Opt Lett. 2021;46(17):4168–71.

    Article 
    PubMed 

    Google Scholar
     

  • Claus D, Iliescu D, Bryanston-Cross P. Quantitative space-bandwidth product analysis in digital holography. Appl Opt. 2011;50(34):H116–27.

    Article 
    PubMed 

    Google Scholar
     

  • Rubart M. Two-photon microscopy of cells and tissue. Circ Res. 2004;95(12):1154–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tozer GM, Ameer-Beg SM, Baker J, Barber PR, Hill SA, Hodgkiss RJ, et al. Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv Drug Deliv Rev. 2005;57(1):135–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heintzmann R, Huser T. Super-resolution structured illumination microscopy. Chem Rev. 2017;117(23):13890–908.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olarte OE, Andilla J, Gualda EJ, Loza-Alvarez P. Light-sheet microscopy: a tutorial. Adv Opt Photonics. 2018;10(1):111–79.

    Article 

    Google Scholar
     

  • Wang Z, Millet L, Mir M, Ding H, Unarunotai S, Rogers J, et al. Spatial light interference microscopy (SLIM). Opt Express. 2011;19(2):1016–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Preza C, Snyder DL, Conchello JA. Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy. JOSA A. 1999;16(9):2185–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bochdansky AB, Jericho MH, Herndl GJ. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particles to a depth of 6000 m. Methods. 2013;11(1):28–40.


    Google Scholar
     

  • MacNeil L, Desai DK, Costa M, LaRoche J. Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf. Sci Rep. 2022;12(1):13078.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corman R, Boutu W, Campalans A, Radicella P, Duarte J, Kholodtsova M, et al. Lensless microscopy platform for single cell and tissue visualization. Biomed Opt Express. 2020;11(5):2806–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon I, Javidi B. Three-dimensional identification of stem cells by computational holographic imaging. J R Soc Interface. 2007;4(13):305–13.

    Article 
    PubMed 

    Google Scholar
     

  • Delikoyun K, Yaman S, Yilmaz E, Sarigil O, Anil-Inevi M, Telli K, et al. HologLev: a hybrid magnetic levitation platform integrated with lensless holographic microscopy for density-based cell analysis. Acs Sens. 2021;6(6):2191–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenbaum A, Zhang Y, Feizi A, Chung PL, Luo W, Kandukuri SR, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci Transl Med. 2014;6(267):267ra175.

    Article 
    PubMed 

    Google Scholar
     

  • Rong L, Latychevskaia T, Chen C, Wang D, Yu Z, Zhou X, et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue. Sci Rep. 2015;5:8445.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois F, Yourassowsky C, Monnom O, Legros JC, Debeir O, van Ham P, et al. Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. J Biomed Opt. 2006;11(5):054032.

    Article 
    PubMed 

    Google Scholar
     

  • Continue Reading