Fitness
Discovery of antimalarial drugs from secondary metabolites in actinomycetes culture library – Tropical Medicine and Health
Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Saunders DL, Mohammed R, et al. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380(3):215–28.
van der Pluijm RW, Tripura R, Hoglund RM, Pyae Phyo A, Lek D, Ul Islam A, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet. 2020;395(10233):1345–60.
Rabinovich RN, Drakeley C, Djimde AA, Hall BF, Hay SI, Hemingway J, et al. malERA: an updated research agenda for malaria elimination and eradication. PLoS Med. 2017;14(11): e1002456.
Tse EG, Korsik M, Todd MH. The past, present and future of anti-malarial medicines. Malar J. 2019;18(1):93.
Ngufor C, Govoetchan R, Fongnikin A, Vigninou E, Syme T, Akogbeto M, et al. Efficacy of broflanilide (VECTRON T500), a new meta-diamide insecticide, for indoor residual spraying against pyrethroid-resistant malaria vectors. Sci Rep. 2021;11(1):7976.
Talman AM, Clain J, Duval R, Menard R, Ariey F. Artemisinin bioactivity and resistance in malaria parasites. Trends Parasitol. 2019;35(12):953–63.
Burgert L, Zaloumis S, Dini S, Marquart L, Cao P, Cherkaoui M, et al. Parasite–host dynamics throughout antimalarial drug development stages complicate the translation of parasite clearance. Antimicrob Agents Chemother. 2021;65(4):e01539-e1620.
Teklemichael AA, Mizukami S, Toume K, Mosaddeque F, Kamel MG, Kaneko O, et al. Anti-malarial activity of traditional Kampo medicine Coptis rhizome extract and its major active compounds. Malar J. 2020;19(1):204.
Chen J, Xu L, Zhou Y, Han B. Natural products from actinomycetes associated with marine organisms. Mar Drugs. 2021;19(11):629.
Ahmad SJ, Abdul Rahim MBH, Baharum SN, Baba MS, Zin NM. Discovery of antimalarial drugs from streptomycetes metabolites using a metabolomic approach. J Trop Med. 2017;2017:2189814.
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33(8):1582–614.
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803.
De La Hoz-Romo MC, Diaz L, Villamil L. Marine actinobacteria a new source of antibacterial metabolites to treat acne vulgaris disease—a systematic literature review. Antibiotics (Basel). 2022;11(7):965.
Takahashi Y, Nakashima T. Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics (Basel). 2018;7(2):45.
Lacey HJ, Rutledge PJ. Recently discovered secondary metabolites from Streptomyces Species. Molecules. 2022;27(3):887.
Ser HL, Tan LT, Law JW, Chan KG, Duangjai A, Saokaew S, et al. Focused review: cytotoxic and antioxidant potentials of mangrove-derived Streptomyces. Front Microbiol. 2017;8:2065.
Law JW, Chan KG, He YW, Khan TM, Ab Mutalib NS, Goh BH, et al. Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. Sci Rep. 2019;9(1):15262.
Park HS, Nah HJ, Kang SH, Choi SS, Kim ES. Screening and isolation of a novel polyene-producing streptomyces strain inhibiting phytopathogenic fungi in the soil environment. Front Bioeng Biotechnol. 2021;9: 692340.
Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science. 1999;285(5433):1573–6.
Eliot AC, Griffin BM, Thomas PM, Johannes TW, Kelleher NL, Zhao H, et al. Cloning, expression, and biochemical characterization of Streptomyces rubellomurinus genes required for biosynthesis of antimalarial compound FR900098. Chem Biol. 2008;15(8):765–70.
Kimura SI, Watanabe Y, Shibasaki S, Shinzato N, Inahashi Y, Sunazuka T, et al. New antimalarial iromycin analogs produced by Streptomyces sp. RBL-0292. J Antibiot (Tokyo). 2024;77:272–7.
Hashim Y, Toume K, Mizukami S, Ge YW, Taniguchi M, Teklemichael AA, et al. Phenylpropanoid conjugated iridoids with anti-malarial activity from the leaves of Morinda morindoides. J Nat Med. 2021;75(4):915–25.
Hashim Y, Toume K, Mizukami S, Kitami T, Taniguchi M, Teklemichael AA, et al. Phenylpropanoid-conjugated iridoid glucosides from leaves of Morinda morindoides. J Nat Med. 2022;76(1):281–90.
Misaki Y, Hirashima T, Fujii K, Hirata A, Hoshino Y, Sumiyoshi M, et al. 4-Methoxy-2,2′-bipyrrole-5-carbaldehyde, a biosynthetic intermediate of bipyrrole-containing natural products from the Streptomyces culture, arrests the strobilation of moon jellyfish Aurelia coerulea. Front Mar Sci. 2023;10:1198136.
Cao Z, Khodakaramian G, Arakawa K, Kinashi H. Isolation of borrelidin as a phytotoxic compound from a potato pathogenic streptomyces strain. Biosci Biotechnol Biochem. 2012;76(2):353–7.
Trager W, Jenson JB. Cultivation of malarial parasites. Nature. 1978;273(5664):621–2.
Mosaddeque F, Mizukami S, Kamel MG, Teklemichael AA, Dat TV, Mizuta S, et al. Prediction model for antimalarial activities of hemozoin inhibitors by using physicochemical properties. Antimicrob Agents Chemother. 2018;62(5):e02424-e2517.
Su XZ, Lane KD, Xia L, Sá JM, Wellems TE. Plasmodium genomics and genetics: new insights into malaria pathogenesis, drug resistance, epidemiology, and evolution. Clin Microbiol Rev. 2019;32(4):e00019-19.
Paton DG, Probst AS, Ma E, Adams KL, Shaw WR, Singh N, et al. Using an antimalarial in mosquitoes overcomes Anopheles and Plasmodium resistance to malaria control strategies. PLoS Pathog. 2022;18(6): e1010609.
Gaillard T, Madamet M, Tsombeng FF, Dormoi J, Pradines B. Antibiotics in malaria therapy: which antibiotics except tetracyclines and macrolides may be used against malaria? Malar J. 2016;15(1):556.
Arsic B, Barber J, Cikos A, Mladenovic M, Stankovic N, Novak P. 16-membered macrolide antibiotics: a review. Int J Antimicrob Agents. 2018;51(3):283–98.
Jaroszewicz W, Bielanska P, Lubomska D, Kosznik-Kwasnicka K, Golec P, Grabowski L, et al. Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated Streptomyces strains from the Szczelina Chocholowska Cave (Tatra Mountains, Poland). Antibiotics (Basel). 2021;10(10):1212.
Bao Y, Li H, Dong Y, Duan H, Li H, Li W. Genome-guided discovery of antifungal filipins from a deep-sea-derived Streptomyces antibioticus. J Nat Prod. 2022;85(2):365–74.
Sharma M, Manhas RK. Purification and characterization of actinomycins from Streptomyces strain M7 active against methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus. BMC Microbiol. 2019;19(1):44.
de Carvalho LP, Groeger-Otero S, Kreidenweiss A, Kremsner PG, Mordmuller B, Held J. Boromycin has rapid-onset antibiotic activity against asexual and sexual blood stages of Plasmodium falciparum. Front Cell Infect Microbiol. 2021;11: 802294.
Auerbach T, Mermershtain I, Davidovich C, Bashan A, Belousoff M, Wekselman I, et al. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. Proc Natl Acad Sci U S A. 2010;107(5):1983–8.
Belousoff MJ, Shapira T, Bashan A, Zimmerman E, Rozenberg H, Arakawa K, et al. Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. Proc Natl Acad Sci U S A. 2011;108(7):2717–22.
Ayoub AT, Abou El-Magd RM, Xiao J, Lewis CW, Tilli TM, Arakawa K, et al. Antitumor activity of lankacidin group antibiotics is due to microtubule stabilization via a paclitaxel-like mechanism. J Med Chem. 2016;59(20):9532–40.
Ayoub AT, Elrefaiy MA, Arakawa K. Computational prediction of the mode of binding of antitumor lankacidin C to tubulin. ACS Omega. 2019;4(2):4461–71.
Muslimin R, Nishiura N, Teshima A, Do KM, Kodama T, Morita H, et al. Chemoenzymatic synthesis, computational investigation, and antitumor activity of monocyclic lankacidin derivatives. Bioorg Med Chem. 2022;53: 116551.
Ayoub AT, Nishiura N, Teshima A, Elrefaiy MA, Muslimin R, Do KM, et al. Bioinspired computational design of lankacidin derivatives for improvement in antitumor activity. Future Med Chem. 2022;14(19):1349–60.
Lo Y-S, Tseng W-H, Chuang C-Y, Hou M-H. The structural basis of actinomycin D-binding induces nucleotide flipping out, a sharp bend and a left-handed twist in CGG triplet repeats. Nucleic Acids Res. 2013;41(7):4284–94.
Koba M, Konopa J. Actinomycin D and its mechanisms of action. Postepy Hig Med Dosw (Online). 2005;59:290–8.
Lu DF, Wang YS, Li C, Wei GJ, Chen R, Dong DM, et al. Actinomycin D inhibits cell proliferations and promotes apoptosis in osteosarcoma cells. Int J Clin Exp Med. 2015;8(2):1904–11.