Connect with us

Fitness

Forest cover percentage drives the peak biting time of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon – Malaria Journal

Published

on

Forest cover percentage drives the peak biting time of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon – Malaria Journal

  • Laurance WF, Cochrane MA, Bergen S, Fearnside PM, Delamônica P, Barber C, et al. The future of the Brazilian Amazon. Science. 2001;291:438–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirby KR, Laurance WF, Albernaz AK, Schroth G, Fearnside PM, Bergen S, et al. The future of deforestation in the Brazilian Amazon. Futures. 2006;38:432–53.

    Article 

    Google Scholar
     

  • Schneider M, Peres CA. Environmental costs of government-sponsored agrarian settlements in Brazilian Amazonia. PLoS ONE. 2015;10: e0134016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci Rep. 2018;8:7077.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacDonald AJ, Mordecai EA. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc Natl Acad Sci USA. 2019;116:22212–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin K, Bellinger M, Rana P. Anthropogenic forest loss and malaria prevalence: a comparative examination of the causes and disease consequences of deforestation in developing nations. AIMS Environ Sci. 2017;4:217–31.

    Article 

    Google Scholar
     

  • Cibulskis RE, Alonso P, Aponte J, Aregawi M, Barrette A, Bergeron L, et al. Malaria: global progress 2000–2015 and future challenges. Infect Dis Poverty. 2016;5:61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kevin BJ. Malaria control by commodities without practical malariology. BMC Public Health. 2017;17:590.

    Article 

    Google Scholar
     

  • WHO. Handbook for integrated vector management (2012) Geneva: World Health Organization, http://whqlibdoc.who.int/publications/2012/9789241502801_eng.pdf. Accessed 1 October 2023

  • Harris AF, Matias-Arnéz A, Hill N. Biting time of Anopheles darlingi in the Bolivian Amazon and implications for control of malaria. Trans R Soc Trop Med Hyg. 2006;100:45–7.

    Article 
    PubMed 

    Google Scholar
     

  • Kabbale FG, Akol AM, Kaddu JB, Onapa AW. Biting patterns and seasonality of Anopheles gambiae sensu lato and Anopheles funestus mosquitoes in Kamuli District Uganda. Parasit Vectors. 2013;6:340.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmerman RH, Lounibos LP, Nishimura N, Galardo AK, Galardo CD, Arruda ME. Nightly biting cycles of malaria vectors in a heterogeneous transmission area of eastern Amazonian Brazil. Malar J. 2013;12:262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laporta GZ, Linton YM, Wilkerson RC, Bergo ES, Nagaki SS, Sant’Ana DC, et al. Malaria vectors in South America: current and future scenarios. Parasit Vectors. 2015;8:426.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sallum MAM, Conn JE, Bergo ES, Laporta GZ, Chaves LS, Bickersmith SA, et al. Vector competence, vectorial capacity of Nyssorhynchus darlingi and the basic reproduction number of Plasmodium vivax in agricultural settlements in the Amazonian Region of Brazil. Malar J. 2019;18:117.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macdonald G. Theory of the eradication of malaria. Bull World Health Organ. 1956;15:369.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, et al. Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J. 2017;16:459.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno M, Saavedra MP, Bickersmith SA, Lainhart W, Tong C, Alava F, et al. Implications for changes in Anopheles darlingi biting behaviour in three communities in the peri-Iquitos region of Amazonian Peru. Malar J. 2015;14:290.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adde A, Dusfour I, Vezenegho S, Carinci R, Issaly J, Gaborit P, et al. Spatial and seasonal dynamics of Anopheles mosquitoes in Saint-Georges de l’Oyapock, French Guiana: influence of environmental factors. J Med Entomol. 2017;54:597–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosa-Freitas MG, Broomfield G, Priestman A, Milligan P, Momen H, Molyneux DH. Cuticular hydrocarbons, isoenzymes and behaviour of three populations of Anopheles darlingi from Brazil. J Am Mosq Control Assoc. 1992;8:357–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Tadei WP, dos Santos JMM, de Souza Costa WL, Scarpassa VM. Biologia de anofelinos amazônicos: XII. Ocorrência de espécies de Anopheles, dinâmica da transmissão e controle da malária na zona urbana de Ariquemes (Rondônia). Rev Inst Med Trop Sao Paulo. 1988;30:221–51.

  • Gama RA, Santos RL, Santos Fd, Silva IM, Resende MC, Eiras ÁE. Periodicity of capture of the Anopheles darlingi Root (Diptera: Culicidae) in Porto Velho, Rondônia Brazil. Neotrop Entomol. 2009;38:677–82.

    Article 
    PubMed 

    Google Scholar
     

  • Barbosa LMC, Souto RNP, dos Anjos Ferreira RM, Scarpassa VM. Behavioral patterns, parity rate and natural infection analysis in anopheline species involved in the transmission of malaria in the northeastern Brazilian Amazon region. Acta Trop. 2016;164:216–25.

    Article 
    PubMed 

    Google Scholar
     

  • Alvarez MVN, Alonso DP, Kadri SM, Rufalco-Moutinho P, Bernardes IAF, de Mello ACF, et al. Nyssorhynchus darlingi genome-wide studies related to microgeographic dispersion and blood-seeking behavior. Parasit Vectors. 2022;15:106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira TM, Laporta GZ, Bergo ES, Chaves LSM, Antunes JLF, Bickersmith SA, et al. Vector role and human biting activity of Anophelinae mosquitoes in different landscapes in the Brazilian Amazon. Parasit Vectors. 2021;14:1–13.

    Article 

    Google Scholar
     

  • Zhong D, Wang X, Xu T, Zhou G, Wang Y, Lee M-C, Hartsel JA, Cui L, Zheng B, Yan G. Effects of microclimate condition changes due to land use and land cover changes on the survivorship of malaria vectors in China–Myanmar border region. PLoS ONE. 2016;11: e0155301.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2010;118:620–6.

    Article 
    PubMed 

    Google Scholar
     

  • Shapiro LL, Whitehead SA, Thomas MB. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 2017;15: e2003489.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campos M, Alonso DP, Conn JE, Vinetz JM, Emerson KJ, Ribolla PEM. Genetic diversity of Nyssorhynchus (Anopheles) darlingi related to biting behavior in western Amazon. Parasit Vectors. 2019;12:1–9.

    Article 

    Google Scholar
     

  • Oliveira TMP, Sanabani SS, Sallum MAM. Bacterial diversity associated with the abdomens of naturally Plasmodium-infected and non-infected Nyssorhynchus darlingi. BMC Microbiol. 2020;20:1–8.

    Article 

    Google Scholar
     

  • Steiger DBM, Ritchie SA, Laurance SG. Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics. Parasit Vectors. 2016;9:1–13.


    Google Scholar
     

  • Rejmánková E, Grieco J, Achee N, Roberts DR. Ecology of larval habitats. Anopheles mosquitoes – New insights into malaria vectors. Intech. 2013; https://doi.org/10.5772/55229.

    Article 

    Google Scholar
     

  • Chaves LSM, Bergo ES, Conn JE, Laporta GZ, Prist PR, Sallum MAM. Anthropogenic landscape decreases mosquito biodiversity and drives malaria vector proliferation in the Amazon rainforest. PLoS ONE. 2021;16: e0245087.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burkett-Cadena ND, Vittor AY. Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic Appl Ecol. 2018;26:101–10.

    Article 
    PubMed 

    Google Scholar
     

  • Austin KF. Brewing unequal exchanges in coffee: a qualitative investigation into the consequences of the Java Trade in Rural Uganda. J World-Systems R. 2017;23:326–52.

    Article 

    Google Scholar
     

  • Afrane YA, Little TJ, Lawson BW, Githeko AK, Yan G. Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission. Kenya Emerg Infect Dis. 2008;14:1533–8.

    Article 
    PubMed 

    Google Scholar
     

  • Chu V, Sallum M, Moore T, Lainhart W, Schlichting C, Conn J. Regional variation in life history traits and plastic responses to temperature of the major malaria vector Nyssorhynchus darlingi in Brazil. Sci Rep. 2019;9:5356.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE. 2013;8: e79276.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on Anopheles: what makes a malaria vector? Trends Parasitol. 2010;26:130–6.

    Article 
    PubMed 

    Google Scholar
     

  • Fialho RF, Schall JJ. Thermal ecology of a malarial parasite and its insect vector: Consequences for the parasite’s transmission success. J Animal Ecol. 1995;64:553–62.

    Article 

    Google Scholar
     

  • Rowland M. Changes in the circadian flight activity of the mosquito Anopheles stephensi associated with insemination, blood-feeding, oviposition and nocturnal light intensity. Physiol Entomol. 1989;14:77–84.

    Article 

    Google Scholar
     

  • Hagan RW, Didion EM, Rosselot AE, Holmes CJ, Siler SC, Rosendale AJ, et al. Dehydration prompts increased activity and blood feeding by mosquitoes. Sci Rep. 2018;8:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Milali MP, Sikulu-Lord MT, Govella NJ. Bites before and after bedtime can carry a high risk of human malaria infection. Malar J. 2017;16:91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE. 2019;14: e0217414.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bickersmith SA, Lainhart W, Moreno M, Chu VM, Vinetz JM, Conn JE. A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of Plasmodium vivax and Plasmodium falciparum infection in field-collected anophelines. Mem Inst Oswaldo Cruz. 2015;110:573–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laporta GZ, Burattini MN, Levy D, et al. Plasmodium falciparum in the southeastern Atlantic forest: a challenge to the bromeliad-malaria paradigm? Malar J. 2015;14:181. https://doi.org/10.1186/s12936-015-0680-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen F, Oksanen J. How to model species responses along ecological gradients – Huisman-Olff-Fresco models revisited. J Veg Sci. 2013;24:1108–17.

    Article 

    Google Scholar
     

  • Loaiza JR, Dutari LC, Rovira JR, Sanjur OI, Laporta GZ, Pecor J, et al. Disturbance and mosquito diversity in the lowland tropical rainforest of central Panama. Sci Rep. 2017;7:7248.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg T. Ecosystems and human health: the local benefits of forest cover in Indonesia. J Environ Econ Manage. 2019;98: 102271.

    Article 

    Google Scholar
     

  • Kweka EJ, Kimaro EE, Munga S. Effect of deforestation and land use changes on mosquito productivity and development in Western Kenya Highlands: implication for malaria risk. Front Public Health. 2016;4:238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, et al. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg. 2006;74:3–11.

    Article 
    PubMed 

    Google Scholar
     

  • Forattini OP. Exophilic behavior of Anopheles darlingi Root in a southern region of Brazil. Rev Saude Publica. 1987;21:291–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voorham J. Intra-population plasticity of Anopheles darlingi’s (Diptera, Culicidae) biting activity patterns in the state of Amapá. Brazil Rev Saude Publica. 2002;36:75–80.

    Article 
    PubMed 

    Google Scholar
     

  • Chow WK, Beebe NW, Ambrose L, Pickering P, Cooper RD. Seasonal assessment on the effects of time of night, temperature and humidity on the biting profile of Anopheles farauti in north Queensland, Australia using a population naive to malaria vector control pressures. Malar J. 2023;22:85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurance WF, Williamson GB. Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv Biol. 2001;15:1529–35.

    Article 

    Google Scholar
     

  • de Castro MC, Monte-Mór RL, Sawyer DO, Singer BH. Malaria risk on the Amazon frontier. Proc Natl Acad Sci USA. 2006;103:2452–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA, et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci USA. 2015;112:8667–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson PT, Ostfeld RS, Keesing F. Frontiers in research on biodiversity and disease. Ecol Lett. 2015;18:1119–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maliti DV, Marsden C, Main B, Govella N, Yamasaki Y, Collier T, et al. Investigating associations between biting time in the malaria vector Anopheles arabiensis Patton and single nucleotide polymorphisms in circadian clock genes: support for sub-structure among An. arabiensis in the Kilombero valley of Tanzania. Parasit Vectors. 2016;9:109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laporta GZ, de Prado PIKL, Kraenkel RA, Coutinho RM, Sallum MAM. Biodiversity can help prevent malaria outbreaks in tropical forests. PLoS Negl Trop Dis. 2013;7: e2139.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos EB, Favretto MA, Müller GA. When and what time? On the seasonal and daily patterns of mosquitoes (Diptera: Culicidae) in an Atlantic Forest remnant from Southern Brazil. Austral Entomol. 2020;59:337–44.

    Article 

    Google Scholar
     

  • Ngowo HS, Kaindoa EW, Matthiopoulos J, Ferguson HM, Okumu FO. Variations in household microclimate affect outdoor-biting behaviour of malaria vectors. Wellcome Open Res. 2017;2:102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koenraadt CJ, Githeko AK, Takken W. The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan village [published correction appears in Acta Trop. 2004;90:301–2]. Acta Trop. 2004;90:141–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vezenegho SB, Adde A, Pommier de Santi V, et al. High malaria transmission in a forested malaria focus in French Guiana: how can exophagic Anopheles darlingi thwart vector control and prevention measures? Mem Inst Oswaldo Cruz. 2016;111:561–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagaki SS, Chaves LSM, López RVM, Bergo ES, Laporta GZ, Conn JE, et al. Host feeding patterns of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon. Acta Trop. 2021;213: 105751.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Continue Reading