Connect with us

Tech

Impact of subtype C-specific amino acid variants on HIV-1 Tat-TAR interaction: insights from molecular modelling and dynamics – Virology Journal

Published

on

Impact of subtype C-specific amino acid variants on HIV-1 Tat-TAR interaction: insights from molecular modelling and dynamics – Virology Journal

  • Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, Tatem AJ, Sousa JD, Arinaminpathy N, Pépin J, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science. 2014;346:56–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:436–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • UNAIDS. UNAIDS DATA. Geneva: Joint United Nations Programme on HIV/AIDS; 2022.


    Google Scholar
     

  • Govender RD, Hashim MJ, Khan MA, Mustafa H, Khan G. Global Epidemiology of HIV/AIDS: A Resurgence in North America and Europe. J Epidemiol Glob Health. 2021;11:296–301.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kharsany AB, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status Challenges and Opportunities. Open AIDS J. 2016;10:34–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemelaar J. The origin and diversity of the HIV-1 pandemic. Trends Mol Med. 2012;18:182–92.

    Article 
    PubMed 

    Google Scholar
     

  • Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I, Kirtley S, Williams B, Gouws-Williams E, Ghys PD. Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis. Lancet Infect Dis. 2019;19:143–55.

    Article 
    PubMed 

    Google Scholar
     

  • Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1:a006841.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor BS, Hammer SM. The challenge of HIV-1 subtype diversity. N Engl J Med. 2008;359:1965–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gartner MJ, Roche M, Churchill MJ, Gorry PR, Flynn JK. Understanding the mechanisms driving the spread of subtype C HIV-1. EBioMedicine. 2020;53:102682.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bbosa N, Kaleebu P, Ssemwanga D. HIV subtype diversity worldwide. Curr Opin HIV AIDS. 2019;14:153–60.

    Article 
    PubMed 

    Google Scholar
     

  • Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull. 2001;58:19–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy CN, Khandaker I, Oshitani H. Evolutionary Dynamics of Tat in HIV-1 Subtypes B and C. PLoS One. 2015;10:e0129896.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maljkovic Berry I, Ribeiro R, Kothari M, Athreya G, Daniels M, Lee HY, Bruno W, Leitner T. Unequal evolutionary rates in the human immunodeficiency virus type 1 (HIV-1) pandemic: the evolutionary rate of HIV-1 slows down when the epidemic rate increases. J Virol. 2007;81:10625–35.

    Article 
    PubMed 

    Google Scholar
     

  • Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol. 2015;13:e1002251.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol. 2019;208:131–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Li G, Steiner J, Nath A. Role of Tat protein in HIV neuropathogenesis. Neurotoxicity research. 2009;16:205–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang M. Discoveries of Tat-TAR interaction inhibitors for HIV-1. Curr Drug Targets Infect Disord. 2005;5:433–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Dahiya S, Kortagere S, Aiamkitsumrit B, Cunningham D, Pirrone V, Nonnemacher MR, Wigdahl B. Impact of Tat Genetic Variation on HIV-1 Disease. Adv Virol. 2012;2012:123605.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotora PT, van der Sluis R, Williams ME. HIV-1 Tat amino acid residues that influence Tat-TAR binding affinity: a scoping review. BMC Infectious Diseases. 2023;23:164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenbaum NL. How Tat targets TAR: structure of the BIV peptide-RNA complex. Structure. 1996;4:5–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddappa NB, Venkatramanan M, Venkatesh P, Janki MV, Jayasuryan N, Desai A, Ravi V, Ranga U. Transactivation and signaling functions of Tat are not correlated: biological and immunological characterization of HIV-1 subtype-C Tat protein. Retrovirology. 2006;3:53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johri MK, Sharma N, Singh SK. HIV Tat protein: Is Tat-C much trickier than Tat-B? J Med Virol. 2015;87:1334–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC. HIV-associated neurocognitive disorder – pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12:309.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell GR, Watkins JD, Singh KK, Loret EP, Spector SA. Human immunodeficiency virus type 1 subtype C Tat fails to induce intracellular calcium flux and induces reduced tumor necrosis factor production from monocytes. Journal of virology. 2007;81:5919–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams ME, Zulu SS, Stein DJ, Joska JA, Naudé PJW. Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis. 2020;136:104701.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santerre M, Wang Y, Arjona S, Allen C, Sawaya BE. Differential Contribution of HIV-1 Subtypes B and C to Neurological Disorders: Mechanisms and Possible Treatments. AIDS Rev. 2019;21:76–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruiz AP, Ajasin DO, Ramasamy S, DesMarais V, Eugenin EA, Prasad VR. A Naturally Occurring Polymorphism in the HIV-1 Tat Basic Domain Inhibits Uptake by Bystander Cells and Leads to Reduced Neuroinflammation. Sci Rep. 2019;9:3308.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurosu T, Mukai T, Komoto S, Ibrahim MS. Li Yg, Kobayashi T, Tsuji S, Ikuta K: Human immunodeficiency virus type 1 subtype C exhibits higher transactivation activity of Tat than subtypes B and E. Microbiology and immunology. 2002;46:787–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borkar AN, Bardaro MF Jr, Camilloni C, Aprile FA, Varani G, Vendruscolo M. Structure of a low-population binding intermediate in protein-RNA recognition. Proc Natl Acad Sci U S A. 2016;113:7171–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaloin O, Peter JC, Briand JP, Masquida B, Desgranges C, Muller S, Hoebeke J. The N-terminus of HIV-1 Tat protein is essential for Tat-TAR RNA interaction. Cell Mol Life Sci. 2005;62:355–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long KS, Crothers DM. Interaction of human immunodeficiency virus type 1 Tat-derived peptides with TAR RNA. Biochemistry. 1995;34:8885–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronsard L, Rai T, Rai D, Ramachandran VG, Banerjea AC. In silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity. Front Microbiol. 2017;8:1467.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams ME, Cloete R. Molecular Modeling of Subtype-Specific Tat Protein Signatures to Predict Tat-TAR Interactions That May Be Involved in HIV-Associated Neurocognitive Disorders. Front Microbiol. 2022;13:866611.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muvenda T, Williams AA, Williams ME. Transactivator of Transcription (Tat)-Induced Neuroinflammation as a key pathway in neuronal dysfunction: a scoping review. Mol Neurobiol. 2024:1–27.

  • Mele AR, Marino J, Dampier W, Wigdahl B, Nonnemacher MR. HIV-1 Tat Length: Comparative and Functional Considerations. Front Microbiol. 2020;11:444.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M, Skinner MA, Valerio R. Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proc Natl Acad Sci U S A. 1989;86:6925–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arab SS, Dantism A. EasyModel: a user-friendly web-based interface based on MODELLER. Sci Rep. 2023;13:17185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15:2507–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John B, Sali A. Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res. 2003;31:3982–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14:71–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29:1859–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ranganathan S, Nakai K, Schonbach C. Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics. Elsevier; 2018.

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963;7:95–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–410.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Havel TF, Snow ME. A new method for building protein conformations from sequence alignments with homologues of known structure. J Mol Biol. 1991;217:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Almeida SM, Rotta I, Vidal LRR, Dos Santos JS, Nath A, Johnson K, Letendre S, Ellis RJ. HIV-1C and HIV-1B Tat protein polymorphism in Southern Brazil. J Neurovirol. 2021;27:126–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein-protein docking. Nat Protoc. 2020;15:1829–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD. Arginine-mediated RNA recognition: the arginine fork. Science. 1991;252:1167–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–447.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, Schroeder M. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49:W530–w534.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2016;12:405–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo S, Cheng X, Lee J, Kim S, Park SJ, Patel DS, Beaven AH, Lee KI, Rui H, Park S, et al. CHARMM-GUI 10 years for biomolecular modeling and simulation. J Comput Chem. 2017;38:1114–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park C, Robinson F, Kim D. On the choice of different water model in molecular dynamics simulations of nanopore transport phenomena. Membranes. 2022;12:1109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etheve L, Martin J, Lavery R. Protein-DNA interfaces: a molecular dynamics analysis of time-dependent recognition processes for three transcription factors. Nucleic Acids Res. 2016;44:9990–10002.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison RL. Introduction To Monte Carlo Simulation. AIP Conf Proc. 2010;1204:17–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng Y, Korolev N, Nordenskiöld L. Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study. Nucleic Acids Res. 2006;34:686–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindahl E, Abraham M, Hess B, Van der Spoel D. Gromacs 2020 Manual. Stockholm, Sweden: GROMACS Development Team; 2020.


    Google Scholar
     

  • Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, Bretaudeau A, Brillet-Guéguen L, Čech M, Chilton J. Community-driven data analysis training for biology. Cell systems. 2018;6(752–758):e751.


    Google Scholar
     

  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Physics. 1981;52:7182–90.

    Article 
    CAS 

    Google Scholar
     

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Physics. 1995;103:8577–93.

    Article 
    CAS 

    Google Scholar
     

  • Paissoni C, Spiliotopoulos D, Musco G, Spitaleri A. GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning. Comput Phys Commun. 2015;186:105–7.

    Article 
    CAS 

    Google Scholar
     

  • Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Computat. 2021;17:6281–91.

    Article 

    Google Scholar
     

  • Bradshaw RT, Patel BH, Tate EW, Leatherbarrow RJ, Gould IR. Comparing experimental and computational alanine scanning techniques for probing a prototypical protein–protein interaction. Protein Eng Des Sel. 2011;24:197–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilson MK, Zhou H-X. Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct. 2007;36:21–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huo S, Massova I, Kollman PA. Computational alanine scanning of the 1: 1 human growth hormone–receptor complex. J Computat Chem. 2002;23:15–27.

    Article 
    CAS 

    Google Scholar
     

  • Moreira IS, Fernandes PA, Ramos MJ. Protein–protein docking dealing with the unknown. J Computat Chem. 2010;31:317–42.

    Article 
    CAS 

    Google Scholar
     

  • Reddy AR, Venkateswarulu T, Babu DJ, Indira M. Homology modeling studies of human genome receptor using modeller, Swiss-model server and esypred-3D tools. Int J Pharmaceut Sci Rev Res. 2015;30:1–6.


    Google Scholar
     

  • Cloete R, Akurugu WA, Werely CJ, van Helden PD, Christoffels A. Structural and functional effects of nucleotide variation on the human TB drug metabolizing enzyme arylamine N-acetyltransferase 1. J Mole Graph Model. 2017;75:330–9.

    Article 
    CAS 

    Google Scholar
     

  • Galaxy_Community. he Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022;2022(50):W345–w351.

    Article 

    Google Scholar
     

  • Smilgies DM, Folta-Stogniew E. Molecular weight-gyration radius relation of globular proteins: a comparison of light scattering, small-angle X-ray scattering and structure-based data. J Appl Crystallogr. 2015;48:1604–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David CC, Jacobs DJ. Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol. 2014;1084:193–226.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubbard RE, Haider MK: Hydrogen bonds in proteins: role and strength. eLS 2010.

  • Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016;2:e1501240.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itoh Y, Nakashima Y, Tsukamoto S, Kurohara T, Suzuki M, Sakae Y, Oda M, Okamoto Y, Suzuki T. N+-CH··· O Hydrogen bonds in protein-ligand complexes. Sci Rep. 2019;9:767.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ur Rehman MF, Shaeer A, Batool AI, Aslam M: Structure-function relationship of extremozymes. In Microbial Extremozymes. Elsevier; 2022: 9-30

  • Yu B, Pettitt BM, Iwahara J. Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces. Acc Chem Res. 2020;53:1802–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordingley MG, LaFemina RL, Callahan PL, Condra JH, Sardana VV, Graham DJ, Nguyen TM, LeGrow K, Gotlib L, Schlabach AJ. Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc Nat Acad Sci. 1990;87:8985–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metzger AU, Bayer P, Willbold D, Hoffmann S, Frank RW, Goody RS, Rösch P. The interaction of HIV-1 Tat(32–72) with its target RNA: a fluorescence and nuclear magnetic resonance study. Biochem Biophys Res Commun. 1997;241:31–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao J, Frankel AD. Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Proc Nat Acad Sci. 1993;90:1571–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranga U, Shankarappa R, Siddappa NB, Ramakrishna L, Nagendran R, Mahalingam M, Mahadevan A, Jayasuryan N, Satishchandra P, Shankar SK, Prasad VR. Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine. J Virol. 2004;78:2586–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandhi N, Saiyed Z, Thangavel S, Rodriguez J, Rao K, Nair MP. Differential effects of HIV type 1 clade B and clade C Tat protein on expression of proinflammatory and antiinflammatory cytokines by primary monocytes. AIDS Res Hum Retroviruses. 2009;25:691–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P. Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol. 2008;63:366–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lessells RJ, Katzenstein DK, de Oliveira T. Are subtype differences important in HIV drug resistance? Curr Opin Virol. 2012;2:636–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatell JM. Antiretroviral Therapy for HIV: Do Subtypes Matter? Clin Infect Dis. 2011;53:1153–5.

    Article 
    PubMed 

    Google Scholar
     

  • Poon AFY, Ndashimye E, Avino M, Gibson R, Kityo C, Kyeyune F, Nankya I, Quiñones-Mateu ME, Arts EJ, Paton NI, et al. First-line HIV treatment failures in non-B subtypes and recombinants: a cross-sectional analysis of multiple populations in Uganda. AIDS Res Therapy. 2019;16:3.

    Article 

    Google Scholar
     

  • Nightingale S, Ances B, Cinque P, Dravid A, Dreyer AJ, Gisslén M, Joska JA, Kwasa J, Meyer A-C, Mpongo N, et al. Cognitive impairment in people living with HIV: consensus recommendations for a new approach. Nat Rev Neurol. 2023;19:424–33.

    Article 
    PubMed 

    Google Scholar
     

  • Nastri BM, Pagliano P, Zannella C, Folliero V, Masullo A, Rinaldi L, et al. HIV and drug-resistant subtypes. Microorganisms. 2023;11:221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominguez C, Boelens R, Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125:1731–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Greene DA, Xiao L, Qi R, Luo R. Recent developments and applications of the MMPBSA method. Front Mol Biosci. 2018;4:87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Continue Reading